Practical Machine
Learning with
Python

A Problem-Solver's Guide to Building
Real-World Intelligent Systems

Dipanjan Sarkar
Raghav Bali
Tushar Sharma

Apress’

Practical Machine
Learning with Python

A Problem-Solver’s Guide to Building
Real-World Intelligent Systems

Dipanjan Sarkar
Raghav Bali
Tushar Sharma

Apress’

Practical Machine Learning with Python

Dipanjan Sarkar Raghav Bali
Bangalore, Karnataka, India Bangalore, Karnataka, India

Tushar Sharma
Bangalore, Karnataka, India

ISBN-13 (pbk): 978-1-4842-3206-4 ISBN-13 (electronic): 978-1-4842-3207-1
https://doi.org/10.1007/978-1-4842-3207-1

Library of Congress Control Number: 2017963290
Copyright © 2018 by Dipanjan Sarkar, Raghav Bali and Tushar Sharma

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Cover image by Freepik (www. freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Celestin Suresh John
Development Editor: Matthew Moodie
Technical Reviewer: Jojo Moolayil
Coordinating Editor: Sanchita Mandal
Copy Editor: Kezia Endsley

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook Bulk
Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-3206-4. For
more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3207-1
www.freepik.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/978-1-4842-3206-4
http://www.apress.com/source-code

This book is dedicated to my parents, partner, friends, family, and well-wishers.

—Dipanjan Sarkar

To all my inspirations, who would never read this!

—Raghav Bali

Dedicated to my family and friends.

—Tushar Sharma

Contents

ADOUt the AUTNOLS......iiireeeeiiirrenesirrsnnssssssnnssssssnnssssnssnsssssssnnssssnsnnnsssssnnnssssnnnnnnnsnnnns Xvii

About the Technical REVIEWETcurrrrrremmmmsssssssssssssssnssssssssssssssnnnssssssssssssssnnnnssssnnns XX

AcknowledgmEeNts.......ccceerusssssssssnnmnmmsssssssssssssnsssssssssssssssnnnssssssssssssnnnnnnssssssssssnnnnnns XXi
FOr@WOKM ..ceeeeeeissemesssnssnmssssssnsssssnssnssssssnnnssssssnnssssssnnnsssssnnnssssssnnssssnnnnnsssnnnnnnnnnnnnnns XXiii
INtrOAUCTION ...euuirreeeessrrrmnsssssnnnnsssnrnnnssssnnnnssssssnnnsssssnnnssssnnnnnssssnnnnsssssnnnnnsssnnnnunsnnnnnnns XXV

Part I: Understanding Machine Learning.....cccessesssssssssssssssssssssssssssnnnss 1

Chapter 1: Machine Learning BasiCs........cuummmmmmmmsmmmmsmsmmsmmsmssssssssssans 3
The Need for Machineg Learning.........cccvevvrrerrenrennensessssses s s ssssessssssssessssssssssssssessssssssens 4
Making Data-Driven DECISIONScceererrerererererersersesersesersesessesssessesessesessssessessssessesessessssessssessesesssnsnses 4
EffiCIENCY @NU SCAIEc.coveereeereeeercrer et re e e s e e e e e aesesaesa s s s e e sae e s e e s ae e e e sae e naenenaen 5
Traditional Programming Paradigm..........cccceeeverrerrrererirererereseressersesessesessesessesssessssessssessssessessssesssnenes 5
Why MacChing LEAINING?cceeueereerereererereresesserssessesessesessessssessssessesessenssssssssessssessssessensssssssssssssenssnenes 6
Understanding Maching Learningcccooeeeeerressessessessesssssssssssesssssssssssssssssssssssssssssssssnes 8
Why Make MaCRINES LEAIN?.........cceuiiieririrsienesis e s e sa s s et se s s sessssns 8
FOrmMal DEfINITION ... e 9
A MUulti-DiSCIpliNary FIeldccoeeeeeeeierescresise e s r e sr s s r e nn s 13
0111 T (=T T =T T 14
Theoretical COMPULET SCIBINCE........ccuovieeerereeeceririr e 15
Practical COMPULET SCIBNCEc.coceureeeeerieeerisiee e senn s 15
IMPOTANT CONCEPES ...ttt enp s 15
D2 e2 T T 16

vi

CONTENTS

MathematiCsccecerieririr e r e n e 18
IMPOTANT CONCEPIS ...ttt p s e p s 19
STALISTICS ..euveuerrerrerrese e rr e e a e e R e e ne e nean 24
Data MiNiNgccocrieriericririrser s n s n e n e n e n e nn e n e nn e nnenan 25
Artificial INTEIlIGENCEcovecerecreirerr e 25
Natural Language ProCESSINGccvverrerierrmiserssesseesesssessessssssessssssesssessessssssessssssssssesns 26
DEEP LEAMMINGc.ceierereririre s n s n e n e nn e n e nnnnnenan 28
IMPOANT CONCEPLS ...t b e e e e a e e a e e ne e aennnnens 3
Machine Learning Methods...........ccoeeiiernnmiennsmnesrssssse s sssssssens 34
SUPEIVISEU LEAMNMINGveveeerrerrerierressessessassessessassessessassessassasssssassssssssasssssssssssssssssasssssssnes 35
ClASSITICALION ... e 36
3T (=TT (0] o OO 37
UNSUPEIVISEA LEAMNING ...cceereeeereerrersessessessessessessessessessessesssssesssssssssssssssssssssssssssssssssssenses 38
L 13 (=T o TS 39
Dimensionality REAUCHION ..o s 40
ANOMAY DEIECHION......ccueceeeecece e e s e e e e b e e ne e nns 41
AsSOCIation RUIE-IMINING.......ccceiuiirriierircrescre e s s s se s e s p e p e e nrnns 41
Semi-Supervised LEArNING.........coouurerrriernsmsesessessssssesesssssssessesssssssssssssssssssssssssssssssssens 42
Reinforcement Learning.........ccucvververrernensensessensessessessessessessessessessesssssssssssssssssssssssssssssens 42
BatCh Learningccvcvierimisinser s sn s s sn s snssn s nnennnnnas 43
ONIINE LEAINING ...uveueeeerreeresr s e s e sse s e s se e sss e s e s e s s sse s ssesss e ssessssssssnnnnens 44
Instance Based Learning........c.cccucvveriernesiennessessssseesesssessesssessesssessessssssesssessssssessessens 44
Model Based Learning..........cccveereerrersessessmsssssesssssessns 45
The CRISP-DM Process MOGEL.........c.ccocvvrrerreniernirserses s sesses e e e e e e sessssssssssnnns 45
BuSiness Understanding...........cccceceerueererereesenessseesessesesesss s sesessssssesesssssssssssssssssssssesssssssssssaes 46
Data Understanding........cocccoeeerennieniniernese e s e st ae s e e s e ne e nanne s 48
DAt PreParation........c.coceeeeereruesereresesesesese s b s e e s e e p s 50
L0 0 L]] o OO RSTTR 51
EVAIUATION ...ttt s et e s e e e s e e e e s e s 52
DEPIOYMENL...... oot s e s e e e R e R e e e r e s 52

CONTENTS

Building Machine INtelligencCe ..o s 52
Machine Learning PIPEIINEScccorueeeerirreiereririeeeses e snns 52
Supervised Machine Learning PIPEIINEcoeeerrrreserrre s sns 54
Unsupervised Machine Learning PIPEliNec.cccoevrcerrinenrcses s sesaesannens 55

Real-World Case Study: Predicting Student Grant Recommendations............c.cccecvrenee. 55
00T (R 56
Data REtriBValcccuiuriiisiiiis i —————— 56
Data Preparation..........ccccveeerererererieresessssersesessesessesessessssessesessesessessssessssessesesssssssessssesassensesessesesassanaens 57
110 =TT o R 60
10T T LT L0 61
Model DEPIOYMENT........ooeeece e s b e e s a e e e e e e e e e e e e e e e nnenaenen 61
Prediction in ACHION. ... ———— 62

Challenges in Maching Learning..........cccccoeeeeeeesesessesessssse e ssesssssssssssssssssssssssssssssssens 64

Real-World Applications of Maching Learningcccceceeeverereerssessesssssessessessessessenens 64

E3 1111 P2 S 65

Chapter 2: The Python Machine Learning Ecosystemcccccuseenmmnssssnnnsssssnnnnns 67

Python: An INTrodUCHONccccevvercerierr e 67
(=T 3101 R 68
11 68
Setting Up a Python ENVIFONMENL.........c.cociveerrereer et see e e ras e sae e sse e ssese e sassesasessssenans 69
Why Python for Data SCIENCE?veceeeeereerererere st see e reesesaese e e e sas e ae e saesessesasaesassesassesaeessenenas 4l

Introducing the Python Machine Learning Ecosystem..........ccoeeeecececccecescescencennnn, 72
JUPYIEE NOTEDOOKS.....c.eeeeeeeeccrere e e s e s neen s 72
NUIMIPY <A e e e e e A e e R e e e Re e e Re e e Re R e e Re e e Renennenenanas 75
PANAAS.....cocect s 84
SCIKIT-IBAI ...ttt 96
Neural Networks and Deep LEarning.........ccoecceeeerenenennesnsesssese e sessessssessssessssesssssssssssssssssessssenns 102
Text Analytics and Natural Language ProCeSSiNg........cccuceerrernrerrnsesesenessnessssessssessssessssssessssessesesss 112
STALSMOUEIS ... b 116

31T TP 118

vii

CONTENTS

Part II: The Machine Learning Pipeline...........ccccccmmnnnnssssnscnnnnnnnnnnns 119

Chapter 3: Processing, Wrangling, and Visualizing Data..........cccoossemmmnnnnecnsssnns 121
Data COIIBCLIONccoeeeeercescrie e 122
BV ettt s s AR AR 122
USON oottt s s bbb ARt 124
XIVIL. ..ttt s ses s ARt 128
HTIVIL @NA SCIAPING ...cuverveeeerereesesesesssseesesesssesesessssssesessssssssesssssssssssssasssssssssssssssssssssssssssssnsssssssenssasns 131
0] TSSO S TR 136
D7 L ez IS 1 (] 137
NUMBIIC 1.t 137
L 137
021 (=T 04 o | 137
Data Wrangling........ccocvcrrernmriersessessesses s s s e e e e e e e snssnssnssnssnssnssnssnsnnnns 138
UNderstanding DAta...........ccoorurecrerreerriee e 138
FILEriNg DAtacccoueeeeecee e e e p e e e e e e 141
TYPECASTING.....cueeereirecreere e e e b e b e e AR e R e e R e e Re R e R e Re e nnn 144
TranSfOrMAtioNS........covvriririrrr i —————————————————— 144
IMPUting MiISSING VAIUES......cccciieereireciresir et n b s e e n s p e 145
Handling DUPIICALES.coieerccrcre e e s p s 147
Handling Categorical Data.............coeviirriernicrnsre e e n s 147
NOrMANIZING VAIUBS ...ttt s s b s e e e sp s p s 148
String ManipUIALIONS ... e nr e 149
Data SUMMANZALION.........ccoiiereririrerr e s 149
Data ViSualization ... 151
Visualizing With PAnas..........cceceeerererererereresessessssesesessesesessssessesessssessessssessssessessssessssessssesasesssnssnes 152
Visualizing With MatplotliD.........ccccverererererrc s sa e e e sae e s e sae e s sa e e snenenaes 161
Python Visualization ECOSYSIEMccceverereererrerereeseresessesesessesessesessesessessssessssessesessessssssassessssessenenes 176
SUMMAIY ...ttt see s s s e sr s s sn s s s s s sn s r e s s sn s nr s e s nnesnesnenn e e e nnennennennesnennnnnnnnnnnan 176

viii

CONTENTS

Chapter 4: Feature Engineering and Selectioncccccuseennnnssnnnnnssssssnssssssnnnns 177

Features: Understand Your Data Bettercoocvninnnnnsns e 178
Data and DAtaSELScovvrrmnmsmsinisnii s ——————————————— 178
FRATUMES......ciiiiici s ———————————————— 179
MOGEIS ... ————————————————————— 179

Revisiting the Machine Learning Pipelingccocucveeiinnnmnnsnnncsssssesessese e 179

Feature Extraction and ENQiNEering.........ccocvvrverrersensensessesses s sessessessessessessessassassssenns 181
What Is Feature ENGINEEIING?.......ccecvererererererrereesersesessesessessssessesessssessessssessssessssessessssessssessenesssnesaes 181
Why Feature ENGINEEIING?.......ccceceeererererererereesessesersesessesessessssessssessssessessssesssssssssssssssssessssessenssssnssaes 183
How D0 YOU ENQINEEI FEATUIES?......veceeeererererertererterereerereressesss e saesessesessesassesassesassessssessssasaesassessenenes 184

Feature Engineering on Numeric Data..........c.ccooverirsrsssssesses s ses e e 185
RAW MBASUIES ... 185
BiNAZation........ocvrvnininiii s ———————————————— 187
ROUNGING ..ttt b e e e e bR e e R e R e e e p e e 188
INEBIACHIONS......ciiiicii i ————————————————— 189
BINMNING .ot R e R R R e Re R AR R e R e e 191
Statistical TranSformationsS.........cu—————— 197

Feature Engineering on Categorical Data...........cccocvvrverirsscsses s 200
Transforming NOMINGI FEALUIESccceeeerrecrerireeseririe e 201
Transforming Ordinal FEATUIESceeeerireeirree s 202
Encoding CategoriCal FEATUIES........covveeririeecririrees s 203

Feature Engineering on Text Dataccccvevvrircennenser s seesesens 209
TEXE Pre-PrOCESSING....ccueeereerererteereereresereres e sae e rsesessesesaesassesaesessesesassessesassesassesaesessesessessssesssnessensnaes 210
Bag 0f WOrds MOGEL.........cccceeeeereeerecrererererer e seesesaeses e sae e sae e sesesaesassesas e saesesaesesassasassassesasnenes 211
Bag 0f N-Grams MOTEIcceeeuerereere s rerereereree s reesesseses e sae e ssesessesessesassesassesaesesassesassasassassesasnenes 212
TF-IDF IMOGEooeoereeeecesceseeessessesseseeseses s s ssses s sess s sses s sessessssssessessessesssssssssessessssssssssesnens 213
DoCUMENT SIMIIAIILYceeeeeeeeeccecc e e e se s e s s e e e ae e ae e s ae e e e naenees 214
0] 0T T O 216
L1 L0 o B = 0T T=T Lo T o 217

ix

CONTENTS

Feature Engineering on Temporal Datacccccenirennnennnmsssnss s sssseenes 220
Date-Based FEATUIES...........covrerererecece e 221
TIME-Based FEATUIESccveiierirrrriresi s 222

Feature Engineering on Image Data..........c.cccvverververnensensessesses s s s sessessessessessesenns 224
Image Metadata FEAtUrES.........ccureririe i e s 225
Raw Image and Channel PIXEISccceeercererrererereseresesesesessesessesessesessessssessssessssessssssssssssesassessenenes 225
GraySCale IMAQGE PIXEIS.......cccerererererererereressersesersesessesessesassessssessesessesessssassessssessesessssssssssssesassessenenns 227
Binning Image Intensity DiStribULIONccovcverre e 227
Image Aggregation STAtiSTICS........ccvrvrerrererierrrererere s s e s e rre e se e se e s e e e e ae e s as e saesasaesasnesaenenes 228
0 [0 L= (=T] 229
00T 0T (=T 0] 230
Localized Feature EXIraCtion ... sssssssssssens 231
Visual Bag 0f WOrds MOGELcccereruerererererseereesersesessessssessssessesessssessessssessssesssssssessssessssessssssenssnes 233
Automated Feature Engineering with Deep Learning.........c.ccvvverererererserersersssessesessesessessssersssessenenaes 236

Feature SCaliNgc.ccocvcririmrsersir s sr s sn e nn s nn e nnnnn 239
StaNdardized SCAlING........coceeeerereee e 240
MiIN-MaX SCAIING.....cceerriririeririerr st e e A e p e e e R e e e R e e 240
RODUSTE SCaAlING......cceiieieerer e e e e e 241

Feature SEIECHIONccvcerercrircr e 242
Threshold-Based MEthods............covvrererererrirssesese e 243
Statistical MEthoUS.........c.ccui s 244
Recursive Feature EMINAtion...........cooinnnnnncrsssscseeeseesee s 247
MOEI-BASEA SEIECHION.cceeeeeceeee e 248

Dimensionality REAUCLION..........ccvcerverierierrerserrr e sn e sn s sa s sn e sn e 249
Feature Extraction with Principal Component ANAIYSISccccvererererrerereresseressessesessesessesessessssessenens 250

SUMMANY ...ttt cee e ss s e e s s sn s e s s s s e sn e resn e sr s nr s s s nr e e e nnesn e e e nn e e e nnennnnnennnnnnnnnnnan 252

Chapter 5: Building, Tuning, and Deploying Modelsccccuusnmnnmnssssnnnsssssannns 255

BUIldING MOGEIS........cocerererer ettt nn e nnenn 256
L0 L] B o TSR 257
Le@rning @ MOGUEL.........couruieeeerececct e e s n e e ne e n e 260

Model Building EXAMPIEScoviiiiriicrincrin et sss s s s ses s s s 263

CONTENTS

Model EVAlUALIONcocceieericirce e 27
Evaluating Classification MOUEIScccoeurueiererirreenenriecseres e 271
Evaluating CluStering MOGEIScccourueeeerireieeererree e 278
Evaluating Regression MOTEIS..........ccccerererriernrerr s sa e s s e se s sa s s e 281

1T L= I VT T T SR 282
Introduction to HYperparameEters. ... vvevererererssere s rese s sse e ssesassesas e saesessesessesassesassesasnenes 283
The Bias-Variance Tradeof..........ouvvmnnsss s 284
CroSS Validationceveveirirniniiesinss s 288
Hyperparameter TUNING STrategieS.......ccvvrevrrererererererereressersesessesessesessesassessssessssessssessesassesassessenenes 291

Model Interpretation..........c.cvcvercercrsnsrsr s nn 295
Understanding SKALer ... e e n e e 297
Model Interpretation in AGHONcoeve i sr e sa e a e sr e sr e nne s 298

Model DEPIOYMENTcccoeiierierirererse s se e se e e 302
MOUEI PEISISIENCE ... 302
CuSTOM DEVEIOPMENT ...t e s s n e e p e e e 303
In-House Model DEPIOYMENT ..o 303
Model DeployMENt @S @ SEIVICEcoueveerererreeererresesesesessesesesesseesesessesesesessssssesessssssssssssssssssssssessssens 304

E3 1111 P2 7S 304

Part lll: Real-World Case Studiesccussmmsessmsmssmsnssssassssassssesnns 309

Chapter 6: Analyzing Bike Sharing Trendsccccussseenmmssssnnnmmssssssssssssssnnssssssnnns 307

The Bike Sharing Dataset..........c.ccvvrrervrrerrrsensesserserses s ses e e sas s s 307

Problem Statement ... ————————— 308

Exploratory Data ANAlYSiS........cceverrenmresmnsessesssessssessessssssssssssssssesssssssesssssssssssssssssssnes 308
PrEPIOCESSING...c.cvrveueeereereereressesesesesse e e e e e e e s s e e e asse e e e s se e e e s b e se e e s b esa e sE s sae e e nsnse e e nensannnees 308
Distribution @nd TreNdS........c.coverererirerererereree e 310
0T 312
L0104 0] (0] 314

xi

CONTENTS

Regression ANAIYSIScccevereneisesssisesesssssesssesss s ssssssss s s sss s sssssssssssssssssssssssnssnes 315
TYPES OF REOIESSION....c.cveeecerieeesirirse s et e s e s s e e e s e e nn e s ans 315
ASSUMPLIONSceeieccirie e e s s e s e s s ae e e s e Re e e A e R e e e b e R e e e e npennnn e npans 316
EVAIUALION CIILEITAceeeeeeceerieeeeresisse et a s e e se s e 316

10T L]] 3o S 317
LiNEAr REOIESSION.....vccveeereeeereeerterersesersesessesssessssessesessssassesassessssessesessessssessssersssessensssesssessnsessssensenees 319
Decision Tree Based REGrESSION..........cocvcrerererererereres s s s s s s ssssssssssssssssaeas 323

NEXE STEPS ...t 330

SUMMEAIY ...ttt a s ae e e r e e s e n e e ne e s nnnnnnnnns 330

Chapter 7: Analyzing Movie Reviews Sentiment..........ccccccmmnrrnnnnssssssssnnnseessnnnns 331

Problem Statement ... s 332

Setting Up DependencCies........ccuverrrerrernersessesses s sesssssesssssesssssessesssssssssssssssssssssssssssssens 332

Getting the DAtccccoeeeeeccr e e n e sn e n e nnnnn 333

Text Pre-Processing and Normalizationccoeevennnenennnsssssesessssesssssesessessesensens 333

Unsupervised Lexicon-Based MOdEISccccoeererreriernnicnnenser s seesnens 336
BiNQG LIS LEXICON....veveeererereeereerersesessesessesssessssessssssssssssessssessssessesssensssessssesssssssssessessssnsssessssessenenes 337
MPQA SUDJECTIVITY LEXICONvcuereeereeereerereresereeserseseseesessesassessesessesessesessessssessssessssessessssesassesassessenenes 337
Lo L] I3 338
AFINN LEXICON......ceeecreeresssesssssssssssssesesssssssssesssssssssssssssssssssssssssssssssssssenenenes 338
SENTIWOIANEL LEXICONeoveeeceeeeeeeeeeeceesesssesessss s s ssssss s s s s ssnns 340
VADER LEXICON.......ceeeeeeesesesesesesesesesesesesesesesesesesesssesssssssssssesesssssssssssssssessssssssssssssssssssssssssssssnssenssenes 342

Classifying Sentiment with Supervised Learning.........ccccoceeeeereseessesessssssssssssssssssnsenns 345

Traditional Supervised Machine Learning Models...........ccccoveernnmrienniesensesnsesenennens 346

Newer Supervised Deep Learning MOdelscccvvrvrverrrsennensensesses s s s sesssssessessenns 349

Advanced Supervised Deep Learning ModelS..........ccceeeeeeereresesessesssssessessssssssesennns 355

Analyzing Sentiment Causation...........cocuervernrmresnsese s 363
Interpreting PrediCtive MOTEIS ...t 363
ANalyzing TOPIC MOUEIScoueurueereririecreriseese s p e p e nenn s 368

E3 1111 P2 7 372

xii

CONTENTS

Chapter 8: Customer Segmentation and Effective Cross Selling.........ccccessueennns 373
Online Retail Transactions Dataset............cocevvvenricrnrnc s 374
Exploratory Data An@lySis........c.ccucrrerreriersenssnsensessesses s ses s e s e s sns e e e ses s s sssnnns 374
Customer Segmentation..........ccoceverererernsrre e sa s sn e sae e 378
00T 3 (< 378
LS LT 379
L 1Ty T T 0T (1 380
CroSS SEIIING ...cveeererrecrerer e a e p e e n e e n s 392
Market Basket Analysis with Association Rule-Mining..........ccoecvevresnsnnsennsesssesesesesese e 393
Association RUIE-MinNiNg BaSICScccueererrrernieninesesssesssessssessssesssssssesssssssssssssssssssssssssssessssessssssnes 394
Association Rule-Mining in ACHION.........cccceirernierr e srs e sr e ss s sre s nesnas 396
1141 112 SRS 405
Chapter 9: Analyzing Wine Types and Qualityccccsssemmnrnssssnsnssssssnnsssssssnnns 407
Problem Statement ... ————————— 407
Setting Up DependencCies........ccuvevrrerrernersessesses s ses s sesssssessssssssssssssssssssssssssssssssssssnsens 408
Getting the DAt ..o s 408
Exploratory Data ANAIYSIS.......c.cceurerrnmrmnensesesssesensssesssse s s sssssssssssssssssssssnes 409
Process and Merge DAtaSets.........cocvveerererreieneresreeseserise s sesse e sss s e e ssssssnnnens 409
Understanding Dataset FEATUIEScccvrurreierrneeserrireese e 410
DESCHPLIVE STATISHCS...cviveeecrererecririr e 413
Inferential STAtiISTICS.oveeeererre e 414
UNIVAKIAte ANAIYSIScccovrveeeererrereieseseseese s e et e s sese e e s s se e e s se e e e sanennas 416
MURIVANIATE ANGIYSIScovierercrieereir e e a e e se e e a e 419
Predictive MOGEIING........cccvverierererer et se s e e sn s e sn e sn e nn e 426
Predicting Wine TYPEScocvcrcerrerersersesseses s s e e s ses e e sn e s s snssnssnssnssnssnsssnnnnns 427
Predicting Wine QUAlItyccocriercersrirsr st 433
E3 1111 P2 7 446

xiii

CONTENTS

Chapter 10: Analyzing Music Trends and Recommendations.........ccuucenrenssannnns 447

The Million Song Dataset Taste Profile..........cccoceeercernsresnscnns e 448
Exploratory Data An@lySis........c.ccuceeerirrersesssnsensis s s ses s s s ssssessssses s snsssssnssssssnsnns 448
Loading and Trimming DAta...........cccoeeeerererieienenesreesesesesesese e sesss e se s s sss s e ssssssssnnens 448
ENhanCing the DAtcccocerreierrneecrir e e 451
ViISUGI ANAIYSISvveueeereeseiresssseseseses e se e e e e s e s s e e s s s e e s s se e e e b e e e b s s e e e e s s e nn e e nsans 452
Recommendation ENQINES..........cocvververierserserninsissesses s ses e sessnssessnsssssessssssssesnsnns 456
Types of Recommendation ENQINES.........ccceeeererererererereresereesersesessesessessssessssessssessessssessssesssssssssssses 457
Utility of Recommendation ENGINES.........cccvererererenercrre s sereeressesessesessesesessesessssesassessesassesssnenes 457
Popularity-Based Recommendation ENGINEccceeevevrevercersrcre s eses e sesaesessesessesessenes 458
Item Similarity Based Recommendation ENGINE..........ccccecevriererererererereresseresessesessesessesessesessesssnees 459
Matrix Factorization Based Recommendation ENGINEcccoeveverererrererseresserse s sessesessesessesssnenes 461
A Note on Recommendation Engine Libraries........ccoceeeveveresesssssessssee s 466
1111 112 SRS 466
Chapter 11: Forecasting Stock and Commodity Pricesc.ccusssemrrsssssnnssssssnnnnss 467
Time Series Data and AN@lYSISc.ccucrvrrerrnserrrrersr e 467
Time SerieS COMPONENTS........ccecererirreerereseese e se s se e s s se s se e e e s se e e e se s e nensans 469
SMOOTHING TECHNIQUES ...ttt n e e n e 471
Forecasting Gold PriCeccccvverierierserser et se s se s sn s sn e sa e 474
Problem Statement..........cci i ——————————— 474
DALASEL ... ————————————————— 474
Traditional APPrOACHESccveereeereerereererereseres e rsesesaesesaesasserae e ssesesaesessesassesassessesassssassessssessenessenssaes 474
11T =TT o 476
Stock Price PrediCtion ... 483
Problem Statement..........covvnnnn s ———————————— 484
DALASEL ... ———————————————————— 484
Recurrent Neural Networks: LSTIM ... ssssns 485
Upcoming Techniques: Prophet ... 495
1111 112 SRS 497

xiv

CONTENTS

Chapter 12: Deep Learning for Computer Visionccccouseemmmnssssnnsssssssssssssssanes 499

Convolutional Neural NEtWorks..........cccnninnnss s 499
Image Classification With CNNSccoeeirrirecerr e sne e e 501
Problem SEateMEeNT..........cooiirrrrr e 501
DALASEL ... 501
CNN Based Deep Learning Classifier from SCratChcccovieiennnciennneesessseesesee s 502
CNN Based Deep Learning Classifier with Pretrained Models............ccccorrurererrrenenenneseseseseeneens 505
Artistic Style Transfer With CNNSccccerererc s 509
2T T 0| (010 o PSSP S SSSS 510
PrEPIOCESSINGceveereerereererererersererseserseressesesersesersesesassessesassessesessesessesessesssersssessesesssnessessssessssersenees 511
0T TR 1T o 1101 513
LTS3 (0] T 0 (1 T2 515
Style TransSTer iN ACHONcceereeerrer et e s ae s e s s ae e ae e s aesesae e s sesae e saenesaenenaenananns 516
SUMMEAIY ...t e a e s e e e e e e e e Re e s e n e e ae e s e nernaeas 520

R © ¥ |

XV

About the Authors

Dipanjan Sarkar is a data scientist at Intel, on a mission to make the
world more connected and productive. He primarily works on Data
Science, analytics, business intelligence, application development, and
building large-scale intelligent systems. He holds a master of technology
degree in Information Technology with specializations in Data Science
and Software Engineering from the International Institute of Information
Technology, Bangalore. He is also an avid supporter of self-learning,
especially Massive Open Online Courses and also holds a Data Science
Specialization from Johns Hopkins University on Coursera.

Dipanjan has been an analytics practitioner for several years,
specializing in statistical, predictive, and text analytics. Having a
passion for Data Science and education, he is a Data Science Mentor
at Springboard, helping people up-skill on areas like Data Science and
Machine Learning. Dipanjan has also authored several books on R,
Python, Machine Learning, and analytics, including Text Analytics with
Python, Apress 2016. Besides this, he occasionally reviews technical books
and acts as a course beta tester for Coursera. Dipanjan’s interests include learning about new technology,
financial markets, disruptive start-ups, Data Science, and more recently, artificial intelligence and Deep
Learning.

Raghav Bali is a data scientist at Intel, enabling proactive and data-driven
IT initiatives. He primarily works on Data Science, analytics, business
intelligence, and development of scalable Machine Learning-based
solutions. He has also worked in domains such as ERP and finance with
some of the leading organizations in the world. Raghav has a master’s
degree (gold medalist) in Information Technology from International
Institute of Information Technology, Bangalore.

Raghav is a technology enthusiast who loves reading and playing
around with new gadgets and technologies. He has also authored
several books on R, Machine Learning, and Analytics. He is a shutterbug,
capturing moments when he isn’t busy solving problems.

xvii

ABOUT THE AUTHORS

Tushar Sharma has a master’s degree from International Institute of
Information Technology, Bangalore. He works as a Data Scientist with
Intel. His work involves developing analytical solutions at scale using
enormous volumes of infrastructure data. In his previous role, he worked
in the financial domain developing scalable Machine Learning solutions
for major financial organizations. He is proficient in Python, R, and Big
Data frameworks like Spark and Hadoop.

Apart from work, Tushar enjoys watching movies, playing badminton,
and is an avid reader. He has also authored a book on R and social media
analytics.

xviii

About the Technical Reviewer

Jojo Moolayil is an Artificial Intelligence professional and published
author of the book: Smarter Decisions - The Intersection of IoT and
Decision Science. With over five years of industrial experience in A.1.,
Machine Learning, Decision Science, and IoT, he has worked with
industry leaders on high impact and critical projects across multiple
verticals. He is currently working with General Electric, the pioneer and
leader in Data Science for Industrial IoT, and lives in Bengaluru—the
Silicon Valley of India.

He was born and raised in Pune, India and graduated from University
of Pune with a major in Information Technology Engineering. He started
his career with Mu Sigma Inc., the world’s largest pure play analytics
provider and then Flutura, an IoT Analytics startup. He has also worked
with the leaders of many Fortune 50 clients.

In his present role with General Electric, he focuses on solving A.I.
and decision science problems for Industrial IoT use cases and developing
Data Science products and platforms for Industrial IoT.

Apart from authoring books on decision science and IoT, Jojo has also been technical reviewer for
various books on Machine Learning and Business Analytics with Apress. He is an active Data Science tutor
and maintains a blog at http://www. jojomoolayil.com/web/blog/.

You can reach out to Jojo at:

http://www.jojomoolayil.com/
https://www.linkedin.com/in/j0j062000

Twould like to thank my family, friends, and mentors for their kind support and constant motivation
throughout my life.

—TJojo John Moolayil

Xix

Acknowledgments

This book would have definitely not been a reality without the help and support from some excellent people
and organizations that have helped us along this journey. First and foremost, a big thank you to all our
readers for not only reading our books but also supporting us with valuable feedback and insights. Truly,
we have learnt a lot from all of you and still continue to do so. We would like to acknowledge the entire
team at Apress for working tirelessly behind the scenes to create and publish quality content for everyone.
A big shout-out goes to the entire Python developer community, especially to the developers of frameworks
like numpy, scipy, scikit-learn, spacy, nltk, pandas, statsmodels, keras, and tensorflow. Thanks also to
organizations like Anaconda, for making the lives of data scientists easier and for fostering an amazing
ecosystem around Data Science and Machine Learning that has been growing exponentially with time. We
also thank our friends, colleagues, teachers, managers, and well-wishers for supporting us with excellent
challenges, strong motivation, and good thoughts. A special mention goes to Ram Varra for not only being

a great mentor and guide to us, but also teaching us how to leverage Data Science as an effective tool from
technical aspects as well as from the business and domain perspectives for adding real impact and value.
We would also like to express our gratitude to our managers and mentors, both past and present, including
Nagendra Venkatesh, Sanjeev Reddy, Tamoghna Ghosh and Sailaja Parthasarathy.

Alot of the content in this book wouldn’t have been possible without the help from several people and
some excellent resources. We would like to thank Christopher Olah for providing some excellent depictions
and explanation for LSTM models (http://colah.github.io), Edwin Chen for also providing an excellent
depiction for LSTM models in his blog (http://blog.echen.me), Gabriel Moreira for providing some
excellent pointers on feature engineering techniques, Ian London for his resources on the Visual Bag of
Words Model (https://ianlondon.github.io), the folks at DataScience.com, especially Pramit Choudhary,
Ian Swanson, and Aaron Kramer, for helping us cover a lot of ground in model interpretation with skater
(https://www.datascience.com), Karlijn Willems and DataCamp for providing an excellent source of
information pertaining to wine quality analysis (https://www.datacamp.com), Siraj Raval for creating
amazing content especially with regard to time series analysis and recommendation engines, Amar Lalwani
for giving us some vital inputs around time series forecasting with Deep Learning, Harish Narayanan for an
excellent article on neural style transfer (https://harishnarayanan.org/writing), and last but certainly
not the least, Frangois Chollet for creating keras and writing an excellent book on Deep Learning.

I'would also like to acknowledge and express my gratitude to my parents, Digbijoy and Sampa, my
partner Durba and my family and well-wishers for their constant love, support, and encouragement that
drive me to strive to achieve more. Special thanks to my fellow colleagues, friends, and co-authors Raghav
and Tushar for slogging many days and nights with me and making this experience worthwhile! Finally, once
again I would like to thank the entire team at Apress, especially Sanchita Mandal, Celestin John, Matthew
Moodie, and our technical reviewer, Jojo Moolayil, for being a part of this wonderful journey.

—Dipanjan Sarkar

xxi

ACKNOWLEDGMENTS

I am indebted to my family, teachers, friends, colleagues, and mentors who have inspired and encouraged
me over the years. I would also like to take this opportunity to thank my co-authors and good friends
Dipanjan Sarkar and Tushar Sharma; you guys are amazing. Special thanks to Sanchita Mandal, Celestin
John, Matthew Moodie, and Apress for the opportunity and support, and last but not the least, thank you to
Jojo Moolayil for the feedback and reviews

—Raghav Bali

I'would like to express my gratitude to my family, teachers, and friends who have encouraged, supported,
and taught me over the years. Special thanks to my classmates, friends, and colleagues, Dipanjan Sarkar and
Raghav Bali, for co-authoring and making this journey wonderful through their valuable inputs and eye for
detail.

I'would also like to thank Matthew Moodie, Sanchita Mandal, Celestin John, and Apress for the
opportunity and their support throughout the journey. Special thanks to the reviews and comments
provided by Jojo Moolayil.

—Tushar Sharma

xxii

Foreword

The availability of affordable compute power enabled by Moore’s law has been enabling rapid advances

in Machine Learning solutions and driving adoption across diverse segments of the industry. The ability

to learn complex models underlying the real-world processes from observed (training) data through
systemic, easy-to-apply Machine Learning solution stacks has been of tremendous attraction to businesses
to harness meaningful business value. The appeal and opportunities of Machine Learning have resulted in
the availability of many resources—books, tutorials, online training, and courses for solution developers,
analysts, engineers, and scientists to learn the algorithms and implement platforms and methodologies. It
is not uncommon for someone just starting out to get overwhelmed by the abundance of the material. In
addition, not following a structured workflow might not yield consistent and relevant results with Machine
Learning solutions.

Key requirements for building robust Machine Learning applications and getting consistent, actionable
results involve investing significant time and effort in understanding the objectives and key value of
the project, establishing robust data pipelines, analyzing and visualizing data, and feature engineering,
selection, and modeling. The iterative nature of these projects involves several Select — Apply — Validate
— Tune cycles before coming up with a suitable Machine Learning-based model. A final and important
step is to integrate the solution (Machine Learning model) into existing (or new) organization systems
or business processes to sustain actionable and relevant results. Hence, the broad requirements of the
ingredients for a robust Machine Learning solution require a development platform that is suited not just
for interactive modeling of Machine Learning, but also excels in data ingestion, processing, visualization,
systems integration, and strong ecosystem support for runtime deployment and maintenance. Python is
an excellent choice of language because it fits the need of the hour with its multi-purpose capabilities, ease
of implementation and integration, active developer community, and ever-growing Machine Learning
ecosystem, leading to its adoption for Machine Learning growing rapidly.

The authors of this book have leveraged their hands-on experience with solving real-world problems
using Python and its Machine Learning ecosystem to help the readers gain the solid knowledge needed to
apply essential concepts, methodologies, tools, and techniques for solving their own real-world problems
and use-cases. Practical Machine Learning with Python aims to cater to readers with varying skill levels
ranging from beginners to experts and enable them in structuring and building practical Machine
Learning solutions.

—Ram R. Varra, Senior Principal Engineer, Intel

xxiii

Introduction

Data is the new oil and Machine Learning is a powerful concept and framework for making the best out of
it. In this age of automation and intelligent systems, it is hardly a surprise that Machine Learning and Data
Science are some of the top buzz words. The tremendous interest and renewed investments in the field of
Data Science across industries, enterprises, and domains are clear indicators of its enormous potential.
Intelligent systems and data-driven organizations are becoming a reality and the advancements in tools
and techniques is only helping it expand further. With data being of paramount importance, there has never
been a higher demand for Machine Learning and Data Science practitioners than there is now. Indeed,

the world is facing a shortage of data scientists. It's been coined “The sexiest job in the 21* Century” which
makes it all the more worthwhile to try to build some valuable expertise in this domain.

Practical Machine Learning with Python is a problem solver’s guide to building real-world intelligent
systems. It follows a comprehensive three-tiered approach packed with concepts, methodologies, hands-on
examples, and code. This book helps its readers master the essential skills needed to recognize and solve
complex problems with Machine Learning and Deep Learning by following a data-driven mindset. Using
real-world case studies that leverage the popular Python Machine Learning ecosystem, this book is your
perfect companion for learning the art and science of Machine Learning to become a successful practitioner.
The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to
think, design, build, and execute Machine Learning systems and projects successfully.

This book will get you started on the ways to leverage the Python Machine Learning ecosystem with its
diverse set of frameworks and libraries. The three-tiered approach of this book starts by focusing on building
a strong foundation around the basics of Machine Learning and relevant tools and frameworks, the next part
emphasizes the core processes around building Machine Learning pipelines, and the final part leverages this
knowledge on solving some real-world case studies from diverse domains, including retail, transportation,
movies, music, computer vision, art, and finance. We also cover a wide range of Machine Learning models,
including regression, classification, forecasting, rule-mining, and clustering. This book also touches on
cutting edge methodologies and research from the field of Deep Learning, including concepts like transfer
learning and case studies relevant to computer vision, including image classification and neural style
transfer. Each chapter consists of detailed concepts with complete hands-on examples, code, and detailed
discussions. The main intent of this book is to give a wide range of readers—including IT professionals,
analysts, developers, data scientists, engineers, and graduate students—a structured approach to gaining
essential skills pertaining to Machine Learning and enough knowledge about leveraging state-of-the-art
Machine Learning techniques and frameworks so that they can start solving their own real-world problems.
This book is application-focused, so it’s not a replacement for gaining deep conceptual and theoretical
knowledge about Machine Learning algorithms, methods, and their internal implementations. We strongly
recommend you supplement the practical knowledge gained through this book with some standard books
on data mining, statistical analysis, and theoretical aspects of Machine Learning algorithms and methods to
gain deeper insights into the world of Machine Learning.

XXV

PART |

Understanding Machine
Learning

CHAPTER 1

Machine Learning Basics

The idea of making intelligent, sentient, and self-aware machines is not something that suddenly came into
existence in the last few years. In fact a lot of lore from Greek mythology talks about intelligent machines
and inventions having self-awareness and intelligence of their own. The origins and the evolution of the
computer have been really revolutionary over a period of several centuries, starting from the basic Abacus
and its descendant the slide rule in the 17th Century to the first general purpose computer designed by
Charles Babbage in the 1800s. In fact, once computers started evolving with the invention of the Analytical
Engine by Babbage and the first computer program, which was written by Ada Lovelace in 1842, people
started wondering and contemplating that could there be a time when computers or machines truly become
intelligent and start thinking for themselves. In fact, the renowned computer scientist, Alan Turing, was
highly influential in the development of theoretical computer science, algorithms, and formal language and
addressed concepts like artificial intelligence and Machine Learning as early as the 1950s. This brief insight
into the evolution of making machines learn is just to give you an idea of something that has been out there
since centuries but has recently started gaining a lot of attention and focus.

With faster computers, better processing, better computation power, and more storage, we have been
living in what I like to call, the “age of information” or the “age of data” Day in and day out, we deal with
managing Big Data and building intelligent systems by using concepts and methodologies from Data
Science, Artificial Intelligence, Data Mining, and Machine Learning. Of course, most of you must have heard
many of the terms I just mentioned and come across sayings like “data is the new 0il”. The main challenge
that businesses and organizations have embarked on in the last decade is to use approaches to try to make
sense of all the data that they have and use valuable information and insights from it in order to make better
decisions. Indeed with great advancements in technology, including availability of cheap and massive
computing, hardware (including GPUs) and storage, we have seen a thriving ecosystem built around
domains like Artificial Intelligence, Machine Learning, and most recently Deep Learning. Researchers,
developers, data scientists, and engineers are working continuously round the clock to research and build
tools, frameworks, algorithms, techniques, and methodologies to build intelligent models and systems that
can predict events, automate tasks, perform complex analyses, detect anomalies, self-heal failures, and even
understand and respond to human inputs.

This chapter follows a structured approach to cover various concepts, methodologies, and ideas
associated with Machine Learning. The core idea is to give you enough background on why we need
Machine Learning, the fundamental building blocks of Machine Learning, and what Machine Learning
offers us presently. This will enable you to learn about how best you can leverage Machine Learning to
get the maximum from your data. Since this is a book on practical Machine Learning, while we will be
focused on specific use cases, problems, and real-world case studies in subsequent chapters, it is extremely
important to understand formal definitions, concepts, and foundations with regard to learning algorithms,
data management, model building, evaluation, and deployment. Hence, we cover all these aspects,
including industry standards related to data mining and Machine Learning workflows, so that it gives you a
foundational framework that can be applied to approach and tackle any of the real-world problems we solve

© Dipanjan Sarkar, Raghav Bali and Tushar Sharma 2018 3
D. Sarkar et al., Practical Machine Learning with Python, https://doi.org/10.1007/978-1-4842-3207-1_1

https://doi.org/10.1007/978-1-4842-3207-1_1

CHAPTER 1 © MACHINE LEARNING BASICS

in subsequent chapters. Besides this, we also cover the different inter-disciplinary fields associated with
Machine Learning, which are in fact related fields all under the umbrella of artificial intelligence.

This book is more focused on applied or practical Machine Learning, hence the major focus in most
of the chapters will be the application of Machine Learning techniques and algorithms to solve real-world
problems. Hence some level of proficiency in basic mathematics, statistics, and Machine Learning would be
beneficial. However since this book takes into account the varying levels of expertise for various readers, this
foundational chapter along with other chapters in Part I and II will get you up to speed on the key aspects
of Machine Learning and building Machine Learning pipelines. If you are already familiar with the basic
concepts relevant to Machine Learning and its significance, you can quickly skim through this chapter and
head over to Chapter 2, “The Python Machine Learning Ecosystem,” where we discuss the benefits of Python
for building Machine Learning systems and the major tools and frameworks typically used to solve Machine
Learning problems.

This book heavily emphasizes learning by doing with a lot of code snippets, examples, and multiple case
studies. We leverage Python 3 and depict all our examples with relevant code files (. py) and jupyter notebooks
(.ipynb) for a more interactive experience. We encourage you to refer to the GitHub repository for this book at
https://github.com/dipanjanS/practical-machine-learning-with-python, where we will be sharing
necessary code and datasets pertaining to each chapter. You can leverage this repository to try all the examples
by yourself as you go through the book and adopt them in solving your own real-world problems. Bonus content
relevant to Machine Learning and Deep Learning will also be shared in the future, so keep watching that space!

The Need for Machine Learning

Human beings are perhaps the most advanced and intelligent lifeform on this planet at the moment. We can
think, reason, build, evaluate, and solve complex problems. The human brain is still something we ourselves
haven’t figured out completely and hence artificial intelligence is still something that’s not surpassed human
intelligence in several aspects. Thus you might get a pressing question in mind as to why do we really need
Machine Learning? What is the need to go out of our way to spend time and effort to make machines learn
and be intelligent? The answer can be summed up in a simple sentence, “To make data-driven decisions at
scale”. We will dive into details to explain this sentence in the following sections.

Making Data-Driven Decisions

Getting key information or insights from data is the key reason businesses and organizations invest

heavily in a good workforce as well as newer paradigms and domains like Machine Learning and artificial
intelligence. The idea of data-driven decisions is not new. Fields like operations research, statistics, and
management information systems have existed for decades and attempt to bring efficiency to any business
or organization by using data and analytics to make data-driven decisions. The art and science of leveraging
your data to get actionable insights and make better decisions is known as making data-driven decisions.
Of course, this is easier said than done because rarely can we directly use raw data to make any insightful
decisions. Another important aspect of this problem is that often we use the power of reasoning or intuition
to try to make decisions based on what we have learned over a period of time and on the job. Our brain is
an extremely powerful device that helps us do so. Consider problems like understanding what your fellow
colleagues or friends are speaking, recognizing people in images, deciding whether to approve or reject a
business transaction, and so on. While we can solve these problems almost involuntary, can you explain
someone the process of how you solved each of these problems? Maybe to some extent, but after a while,

http://dx.doi.org/10.1007/978-1-4842-3207-1_2
https://github.com/dipanjanS/practical-machine-learning-with-python

CHAPTER 1 © MACHINE LEARNING BASICS

"

it would be like, “Hey! My brain did most of the thinking for me!” This is exactly why it is difficult to make
machines learn to solve these problems like regular computational programs like computing loan interest or
tax rebates. Solutions to problems that cannot be programmed inherently need a different approach where
we use the data itself to drive decisions instead of using programmable logic, rules, or code to make these
decisions. We discuss this further in future sections.

Efficiency and Scale

While getting insights and making decisions driven by data are of paramount importance, it also needs to

be done with efficiency and at scale. The key idea of using techniques from Machine Learning or artificial
intelligence is to automate processes or tasks by learning specific patterns from the data. We all want computers
or machines to tell us when a stock might rise or fall, whether an image is of a computer or a television, whether
our product placement and offers are the best, determine shopping price trends, detect failures or outages
before they occur, and the list just goes on! While human intelligence and expertise is something that we
definitely can’t do without, we need to solve real-world problems at huge scale with efficiency.

A REAL-WORLD PROBLEM AT SCALE

Consider the following real-world problem. You are the manager of a world-class infrastructure team
for the DSS Company that provides Data Science services in the form of cloud based infrastructure
and analytical platforms for other businesses and consumers. Being a provider of services and
infrastructure, you want your infrastructure to be top-notch and robust to failures and outages.
Considering you are starting out of St. Louis in a small office, you have a good grasp over monitoring
all your network devices including routers, switches, firewalls, and load balancers regularly with your
team of 10 experienced employees. Soon you make a breakthrough with providing cloud based Deep
Learning services and GPUs for development and earn huge profits. However, now you keep getting
more and more customers. The time has come for expanding your base to offices in San Francisco,
New York, and Boston. You have a huge connected infrastructure now with hundreds of network devices
in each building! How will you manage your infrastructure at scale now? Do you hire more manpower
for each office or do you try to leverage Machine Learning to deal with tasks like outage prediction,
auto-recovery, and device monitoring? Think about this for some time from both an engineer as well as
a manager's point of view.

Traditional Programming Paradigm

Computers, while being extremely sophisticated and complex devices, are just another version of our well
known idiot box, the television! “How can that be?” is a very valid question at this point. Let’s consider a
television or even one of the so-called smart TVs, which are available these days. In theory as well as in
practice, the TV will do whatever you program it to do. It will show you the channels you want to see, record
the shows you want to view later on, and play the applications you want to play! The computer has been
doing the exact same thing but in a different way. Traditional programming paradigms basically involve the
user or programmer to write a set of instructions or operations using code that makes the computer perform
specific computations on data to give the desired results. Figure 1-1 depicts a typical workflow for traditional
programming paradigms.

CHAPTER 1 © MACHINE LEARNING BASICS

Data

> Computer —P» ouput

Figure 1-1. Traditional programming paradigm

From Figure 1-1, you can get the idea that the core inputs that are given to the computer are data and
one or more programs that are basically code written with the help of a programming language, such as
high-level languages like Java, Python, or low-level like C or even Assembly. Programs enable computers
to work on data, perform computations, and generate output. A task that can be performed really well with
traditional programming paradigms is computing your annual tax.

Now, let’s think about the real-world infrastructure problem we discussed in the previous section for
DSS Company. Do you think a traditional programming approach might be able to solve this problem? Well,
it could to some extent. We might be able to tap in to the device data and event streams and logs and access
various device attributes like usage levels, signal strength, incoming and outgoing connections, memory
and processor usage levels, error logs and events, and so on. We could then use the domain knowledge
of our network and infrastructure experts in our teams and set up some event monitoring systems based
on specific decisions and rules based on these data attributes. This would give us what we could call as a
rule-based reactive analytical solution where we can monitor devices, observe if any specific anomalies or
outages occur, and then take necessary action to quickly resolve any potential issues. We might also have
to hire some support and operations staff to continuously monitor and resolve issues as needed. However,
there is still a pressing problem of trying to prevent as many outages or issues as possible before they actually
take place. Can Machine Learning help us in some way?

Why Machine Learning?

We will now address the question that started this discussion of why we need Machine Learning.
Considering what you have learned so far, while the traditional programming paradigm is quite good and
human intelligence and domain expertise is definitely an important factor in making data-driven decisions,
we need Machine Learning to make faster and better decisions. The Machine Learning paradigm tries to
take into account data and expected outputs or results if any and uses the computer to build the program,
which is also known as a model. This program or model can then be used in the future to make necessary
decisions and give expected outputs from new inputs. Figure 1-2 shows how the Machine Learning
paradigm is similar yet different from traditional programming paradigms.

CHAPTER 1 © MACHINE LEARNING BASICS

Data
Model
Computer Brogr)
Outputs
(Optional)

Figure 1-2. Machine Learning paradigm

Figure 1-2 reinforces the fact that in the Machine Learning paradigm, the machine, in this context the
computer, tries to use input data and expected outputs to try to learn inherent patterns in the data that
would ultimately help in building a model analogous to a computer program, which would help in making
data-driven decisions in the future (predict or tell us the output) for new input data points by using the
learned knowledge from previous data points (its knowledge or experience). You might start to see the
benefit in this. We would not need hand-coded rules, complex flowcharts, case and if-then conditions, and
other criteria that are typically used to build any decision making system or a decision support system. The
basic idea is to use Machine Learning to make insightful decisions.

This will be clearer once we discuss our real-world problem of managing infrastructure for DSS
Company. In the traditional programming approach, we talked about hiring new staff, setting up rule-based
monitoring systems, and so on. If we were to use a Machine Learning paradigm shift here, we could go about
solving the problem using the following steps.

e Leverage device data and logs and make sure we have enough historical data in
some data store (database, logs, or flat files)

e Decide key data attributes that could be useful for building a model. This could be
device usage, logs, memory, processor, connections, line strength, links, and so on.

e Observe and capture device attributes and their behavior over various time periods
that would include normal device behavior and anomalous device behavior or
outages. These outcomes would be your outputs and device data would be your inputs

e Feed these input and output pairs to any specific Machine Learning algorithm in
your computer and build a model that learns inherent device patterns and observes
the corresponding output or outcome

e Deploy this model such that for newer values of device attributes it can predict if a
specific device is behaving normally or it might cause a potential outage

Thus once you are able to build a Machine Learning model, you can easily deploy it and build an
intelligent system around it such that you can not only monitor devices reactively but you would be able
to proactively identify potential problems and even fix them before any issues crop up. Imagine building
self-heal or auto-heal systems coupled with round the clock device monitoring. The possibilities are indeed
endless and you will not have to keep on hiring new staff every time you expand your office or buy new
infrastructure.

Of course, the workflow discussed earlier with the series of steps needed for building a Machine
Learning model is much more complex than how it has been portrayed, but again this is just to emphasize
and make you think more conceptually rather than technically of how the paradigm has shifted in case

CHAPTER 1 © MACHINE LEARNING BASICS

of Machine Learning processes and you need to change your thinking too from the traditional based
approaches toward being more data-driven. The beauty of Machine Learning is that it is never domain
constrained and you can use techniques to solve problems spanning multiple domains, businesses, and
industries. Also, as depicted in Figure 1-2, you always do not need output data points to build a model;
sometimes input data is sufficient (or rather output data might not be present) for techniques more suited
toward unsupervised learning (which we will discuss in depth later on in this chapter). A simple example is
trying to determine customer shopping patterns by looking at the grocery items they typically buy together
in a store based on past transactional data. In the next section, we take a deeper dive toward understanding
Machine Learning.

Understanding Machine Learning

By now, you have seen how a typical real-world problem suitable to solve using Machine Learning might
look like. Besides this, you have also got a good grasp over the basics of traditional programming and
Machine Learning paradigms. In this section, we discuss Machine Learning in more detail. To be more
specific, we will look at Machine Learning from a conceptual as well as a domain-specific standpoint.
Machine Learning came into prominence perhaps in the 1990s when researchers and scientists started
giving it more prominence as a sub-field of Artificial Intelligence (AI) such that techniques borrow concepts
from AI, probability, and statistics, which perform far better compared to using fixed rule-based models
requiring a lot of manual time and effort. Of course, as we have pointed out earlier, Machine Learning didn’t
just come out of nowhere in the 1990s. It is a multi-disciplinary field that has gradually evolved over time
and is still evolving as we speak.

A brief mention of history of evolution would be really helpful to get an idea of the various concepts
and techniques that have been involved in the development of Machine Learning and Al You could say
that it started off in the late 1700s and the early 1800s when the first works of research were published which
basically talked about the Bayes’ Theorem. In fact Thomas Bayes’ major work, “An Essay Towards Solving
a Problem in the Doctrine of Chances,” was published in 1763. Besides this, a lot of research and discovery
was done during this time in the field of probability and mathematics. This paved the way for more ground
breaking research and inventions in the 20th Century, which included Markov Chains by Andrey Markov
in the early 1900s, proposition of a learning system by Alan Turing, and the invention of the very famous
perceptron by Frank Rosenblatt in the 1950s. Many of you might know that neural networks had several
highs and lows since the 1950s and they finally came back to prominence in the 1980s with the discovery
of backpropagation (thanks to Rumelhart, Hinton, and Williams!) and several other inventions, including
Hopfield networks, neocognition, convolutional and recurrent neural networks, and Q-learning. Of course,
rapid strides of evolution started taking place in Machine Learning too since the 1990s with the discovery
of random forests, support vector machines, long short-term memory networks (LSTMs), and development
and release of frameworks in both machine and Deep Learning including torch, theano, tensorflow,
scikit-learn, and so on. We also saw the rise of intelligent systems including IBM Watson, DeepFace, and
AlphaGo. Indeed the journey has been quite a roller coaster ride and there’s still miles to go in this journey.
Take a moment and reflect on this evolutional journey and let’s talk about the purpose of this journey. Why
and when should we really make machines learn?

Why Make Machines Learn?

We have discussed a fair bit about why we need Machine Learning in a previous section when we address
the issue of trying to leverage data to make data-driven decisions at scale using learning algorithms without
focusing too much on manual efforts and fixed rule-based systems. In this section, we discuss in more
detail why and when should we make machines learn. There are several real-world tasks and problems
that humans, businesses, and organizations try to solve day in and day out for our benefit. There are several
scenarios when it might be beneficial to make machines learn and some of them are mentioned as follows.

8

CHAPTER 1 © MACHINE LEARNING BASICS

e Lack of sufficient human expertise in a domain (e.g., simulating navigations in
unknown territories or even spatial planets).

e Scenarios and behavior can keep changing over time (e.g., availability of
infrastructure in an organization, network connectivity, and so on).

e Humans have sufficient expertise in the domain but it is extremely difficult to
formally explain or translate this expertise into computational tasks (e.g., speech
recognition, translation, scene recognition, cognitive tasks, and so on).

e Addressing domain specific problems at scale with huge volumes of data with too
many complex conditions and constraints.

The previously mentioned scenarios are just several examples where making machines learn would be
more effective than investing time, effort, and money in trying to build sub-par intelligent systems that might
be limited in scope, coverage, performance, and intelligence. We as humans and domain experts already
have enough knowledge about the world and our respective domains, which can be objective, subjective,
and sometimes even intuitive. With the availability of large volumes of historical data, we can leverage the
Machine Learning paradigm to make machines perform specific tasks by gaining enough experience by
observing patterns in data over a period of time and then use this experience in solving tasks in the future
with minimal manual intervention. The core idea remains to make machines solve tasks that can be easily
defined intuitively and almost involuntarily but extremely hard to define formally.

Formal Definition

We are now ready to define Machine Learning formally. You may have come across multiple definitions of
Machine Learning by now which include, techniques to make machines intelligent, automation on steroids,
automating the task of automation itself, the sexiest job of the 21st century, making computers learn by
themselves and countless others! While all of them are good quotes and true to certain extents, the best way
to define Machine Learning would be to start from the basics of Machine Learning as defined by renowned
professor Tom Mitchell in 1997.

The idea of Machine Learning is that there will be some learning algorithm that will help the machine
learn from data. Professor Mitchell defined it as follows.

“A computer program is said to learn from experience E with respect to some class of tasks
T and performance measure B, if its performance at tasks in T, as measured by P, improves
with experience E.”

While this definition might seem daunting at first, I ask you go read through it a couple of times slowly
focusing on the three parameters—T, P, and E—which are the main components of any learning algorithm,
as depicted in Figure 1-3.

CHAPTER 1 © MACHINE LEARNING BASICS

Machine Learning Algorithm (Model)

Figure 1-3. Defining the components of a learning algorithm

We can simplify the definition as follows. Machine Learning is a field that consists of learning
algorithms that:

e Improve their performance P
e Atexecuting some task T
e Over time with experience E

While we discuss at length each of these entities in the following sections, we will not spend time
in formally or mathematically defining each of these entities since the scope of the book is more toward
applied or practical Machine Learning. If you consider our real-world problem from earlier, one of the tasks
T could be predicting outages for our infrastructure; experience E would be what our Machine Learning
model would gain over time by observing patterns from various device data attributes; and the performance
of the model P could be measured in various ways like how accurately the model predicts outages.

Defining the Task, T

We had discussed briefly in the previous section about the task, T, which can be defined in a two-fold
approach. From a problem standpoint, the task, T, is basically the real-world problem to be solved at hand,
which could be anything from finding the best marketing or product mix to predicting infrastructure failures.
In the Machine Learning world, it is best if you can define the task as concretely as possible such that you
talk about what the exact problem is which you are planning to solve and how you could define or formulate
the problem into a specific Machine Learning task.

Machine Learning based tasks are difficult to solve by conventional and traditional programming
approaches. A task, 7, can usually be defined as a Machine Learning task based on the process or workflow
that the system should follow to operate on data points or samples. Typically a data sample or point will
consist of multiple data attributes (also called features in Machine Learning lingo) just like the various
device parameters we mentioned in our problem for DSS Company earlier. A typical data point can be

10

CHAPTER 1 © MACHINE LEARNING BASICS

denoted by a vector (Python list) such that each element in the vector is for a specific data feature or
attribute. We discuss more about features and data points in detail in a future section as well as in Chapter 4,
“Feature Engineering and Selection”.

Coming back to the typical tasks that could be classified as Machine Learning tasks, the following list
describes some popular tasks.

e (Classification or categorization: This typically encompasses the list of problems or
tasks where the machine has to take in data points or samples and assign a specific
class or category to each sample. A simple example would be classifying animal
images into dogs, cats, and zebras.

e Regression: These types of tasks usually involve performing a prediction such that
areal numerical value is the output instead of a class or category for an input data
point. The best way to understand a regression task would be to take the case of a
real-world problem of predicting housing prices considering the plot area, number
of floors, bathrooms, bedrooms, and kitchen as input attributes for each data point.

e Anomaly detection: These tasks involve the machine going over event logs,
transaction logs, and other data points such that it can find anomalous or unusual
patterns or events that are different from the normal behavior. Examples for this
include trying to find denial of service attacks from logs, indications of fraud,
and so on.

e Structured annotation: This usually involves performing some analysis on input
data points and adding structured metadata as annotations to the original data
that depict extra information and relationships among the data elements. Simple
examples would be annotating text with their parts of speech, named entities,
grammar, and sentiment. Annotations can also be done for images like assigning
specific categories to image pixels, annotate specific areas of images based on their
type, location, and so on.

e Translation: Automated machine translation tasks are typically of the nature such
that if you have input data samples belonging to a specific language, you translate it
into output having another desired language. Natural language based translation is
definitely a huge area dealing with a lot of text data.

e Clustering or grouping: Clusters or groups are usually formed from input data
samples by making the machine learn or observe inherent latent patterns,
relationships and similarities among the input data points themselves. Usually there
is a lack of pre-labeled or pre-annotated data for these tasks hence they form a part
of unsupervised Machine Learning (which we will discuss later on). Examples would
be grouping similar products, events and entities.

e Transcriptions: These tasks usually entail various representations of data that are
usually continuous and unstructured and converting them into more structured
and discrete data elements. Examples include speech to text, optical character
recognition, images to text, and so on.

This should give you a good idea of typical tasks that are often solved using Machine Learning, but this
list is definitely not an exhaustive one as the limits of tasks are indeed endless and more are being discovered
with extensive research over time.

11

http://dx.doi.org/10.1007/978-1-4842-3207-1_4

CHAPTER 1 © MACHINE LEARNING BASICS

Defining the Experience, E

At this point, you know that any learning algorithm typically needs data to learn over time and perform a
specific task, which we named as T. The process of consuming a dataset that consists of data samples or data
points such that a learning algorithm or model learns inherent patterns is defined as the experience, E which
is gained by the learning algorithm. Any experience that the algorithm gains is from data samples or data
points and this can be at any point of time. You can feed it data samples in one go using historical data or
even supply fresh data samples whenever they are acquired.

Thus, the idea of a model or algorithm gaining experience usually occurs as an iterative process, also
known as training the model. You could think of the model to be an entity just like a human being which
gains knowledge or experience through data points by observing and learning more and more about various
attributes, relationships and patterns present in the data. Of course, there are various forms and ways of
learning and gaining experience including supervised, unsupervised, and reinforcement learning but we
will discuss learning methods in a future section. For now, take a step back and remember the analogy we
drew that when a machine truly learns, it is based on data which is fed to it from time to time thus allowing
it to gain experience and knowledge about the task to be solved, such that it can used this experience, E, to
predict or solve the same task, T, in the future for previously unseen data points.

Defining the Performance, P

Let’s say we have a Machine Learning algorithm that is supposed to perform a task, T, and is gaining
experience, E, with data points over a period of time. But how do we know if it’s performing well or behaving
the way it is supposed to behave? This is where the performance, P, of the model comes into the picture.

The performance, P, is usually a quantitative measure or metric that’s used to see how well the algorithm or
model is performing the task, T, with experience, E. While performance metrics are usually standard metrics
that have been established after years of research and development, each metric is usually computed
specific to the task, T, which we are trying to solve at any given point of time.

Typical performance measures include accuracy, precision, recall, F1 score, sensitivity, specificity,
error rate, misclassification rate, and many more. Performance measures are usually evaluated on training
data samples (used by the algorithm to gain experience, E) as well as data samples which it has not seen or
learned from before, which are usually known as validation and test data samples. The idea behind this is to
generalize the algorithm so that it doesn’t become too biased only on the training data points and performs
well in the future on newer data points. More on training, validation, and test data will be discussed when we
talk about model building and validation.

While solving any Machine Learning problem, most of the times, the choice of performance measure,
P, is either accuracy, F1 score, precision, and recall. While this is true in most scenarios, you should always
remember that sometimes it is difficult to choose performance measures that will accurately be able to
give us an idea of how well the algorithm is performing based on the actual behavior or outcome which is
expected from it. A simple example would be that sometimes we would want to penalize misclassification
or false positives more than correct hits or predictions. In such a scenario, we might need to use a modified
cost function or priors such that we give a scope to sacrifice hit rate or overall accuracy for more accurate
predictions with lesser false positives. A real-world example would be an intelligent system that predicts
if we should give a loan to a customer. It’s better to build the system in such a way that it is more cautious
against giving a loan than denying one. The simple reason is because one big mistake of giving a loan to
a potential defaulter can lead to huge losses as compared to denying several smaller loans to potential
customers. To conclude, you need to take into account all parameters and attributes involved in task, T,
such that you can decide on the right performance measures, P, for your system.

12

CHAPTER 1 © MACHINE LEARNING BASICS

A Multi-Disciplinary Field

We have formally introduced and defined Machine Learning in the previous section, which should give

you a good idea about the main components involved with any learning algorithm. Let’s now shift our
perspective to Machine Learning as a domain and field. You might already know that Machine Learning

is mostly considered to be a sub-field of artificial intelligence and even computer science from some
perspectives. Machine Learning has concepts that have been derived and borrowed from multiple fields
over a period of time since its inception, making it a true multi-disciplinary or inter-disciplinary field.
Figure 1-4 should give you a good idea with regard to the major fields that overlap with Machine Learning
based on concepts, methodologies, ideas, and techniques. An important point to remember here is that this
is definitely not an exhaustive list of domains or fields but pretty much depicts the major fields associated in
tandem with Machine Learning.

Machine Leaming

Data Science

Figure 1-4. Machine Learning: a true multi-disciplinary field

The major domains or fields associated with Machine Learning include the following, as depicted in
Figure 1-4. We will discuss each of these fields in upcoming sections.

e Artificial intelligence

e Natural language processing
e Data mining

e Mathematics

e Statistics

e Computer science

e Deep Learning

e Data Science

13

CHAPTER 1 © MACHINE LEARNING BASICS

You could say that Data Science is like a broad inter-disciplinary field spanning across all the other fields
which are sub-fields inside it. Of course this is just a simple generalization and doesn’t strictly indicate that it
is inclusive of all other other fields as a superset, but rather borrows important concepts and methodologies
from them. The basic idea of Data Science is once again processes, methodologies, and techniques to extract
information from data and domain knowledge. This is a big part of what we discuss in an upcoming section
when we talk about Data Science in further details.

Coming back to Machine Learning, ideas of pattern recognition and basic data mining methodologies
like knowledge discovery of databases (KDD) came into existence when relational databases were very
prominent. These areas focus more on the ability and technique to mine for information from large datasets,
such that you can get patterns, knowledge, and insights of interest. Of course, KDD is a whole process by
itself that includes data acquisition, storage, warehousing, processing, and analysis. Machine Learning
borrows concepts that are more concerned with the analysis phase, although you do need to go through the
other steps to reach to the final stage. Data mining is again a interdisciplinary or multi-disciplinary field and
borrows concepts from computer science, mathematics, and statistics. The consequence of this is the fact
that computational statistics form an important part of most Machine Learning algorithms and techniques.

Artificial intelligence (Al) is the superset consisting of Machine Learning as one of its specialized areas.
The basic idea of Al is the study and development of intelligence as exhibited by machines based on their
perception of their environment, input parameters and attributes and their response such that they can
perform desired tasks based on expectations. Al itself is a truly massive field which is itself inter-disciplinary.
It draws on concepts from mathematics, statistics, computer science, cognitive sciences, linguistics,
neuroscience, and many more. Machine Learning is more concerned with algorithms and techniques that
can be used to understand data, build representations, and perform tasks such as predictions. Another
major sub-field under Al related to Machine Learning is natural language processing (NLP) which borrows
concepts heavily from computational linguistics and computer science. Text Analytics is a prominent field
today among analysts and data scientists to extract, process and understand natural human language.
Combine NLP with AT and Machine Learning and you get chatbots, machine translators, and virtual
personal assistants, which are indeed the future of innovation and technology!

Coming to Deep Learning, it is a subfield of Machine Learning itself which deals more with techniques
related to representational learning such that it improves with more and more data by gaining more
experience. It follows a layered and hierarchical approach such that it tries to represent the given input
attributes and its current surroundings, using a nested layered hierarchy of concept representations such
that, each complex layer is built from another layer of simpler concepts. Neural networks are something
which is heavily utilized by Deep Learning and we will look into Deep Learning in a bit more detail in a
future section and solve some real-world problems later on in this book.

Computer science is pretty much the foundation for most of these domains dealing with study,
development, engineering, and programming of computers. Hence we won’t be expanding too much on this
but you should definitely remember the importance of computer science for Machine Learning to exist and
be easily applied to solve real-world problems. This should give you a good idea about the broad landscape
of the multi-disciplinary field of Machine Learning and how it is connected across multiple related and
overlapping fields. We will discuss some of these fields in more detail in upcoming sections and cover some
basic concepts in each of these fields wherever necessary.

Let’s look at some core fundamentals of Computer Science in the following section.

Computer Science

The field of computer science (CS) can be defined as the study of the science of understanding computers.
This involves study, research, development, engineering, and experimentation of areas dealing with
understanding, designing, building, and using computers. This also involves extensive design and
development of algorithms and programs that can be used to make the computer perform computations
and tasks as desired. There are mainly two major areas or fields under computer science, as follows.

14

CHAPTER 1 © MACHINE LEARNING BASICS

e Theoretical computer science
e Applied or practical computer science

The two major areas under computer science span across multiple fields and domains wherein each
field forms a part or a sub-field of computer science. The main essence of computer science includes
formal languages, automata and theory of computation, algorithms, data structures, computer design and
architecture, programming languages, and software engineering principles.

Theoretical Computer Science

Theoretical computer science is the study of theory and logic that tries to explain the principles and
processes behind computation. This involves understanding the theory of computation which talks about
how computation can be used efficiently to solve problems. Theory of computation includes the study of
formal languages, automata, and understanding complexities involved in computations and algorithms.
Information and coding theory is another major field under theoretical CS that has given us domains like
signal processing, cryptography, and data compression. Principles of programming languages and their
analysis is another important aspect that talks about features, design, analysis, and implementations

of various programming languages and how compilers and interpreters work in understanding these
languages. Last but never the least, data structures and algorithms are the two fundamental pillars of
theoretical CS used extensively in computational programs and functions.

Practical Computer Science

Practical computer science also known as applied computer science is more about tools, methodologies,

and processes that deal with applying concepts and principles from computer science in the real world to
solve practical day-to-day problems. This includes emerging sub-fields like artificial intelligence, Machine
Learning, computer vision, Deep Learning, natural language processing, data mining, and robotics and they
try to solve complex real-world problems based on multiple constraints and parameters and try to emulate
tasks that require considerable human intelligence and experience. Besides these, we also have well-
established fields, including computer architecture, operating systems, digital logic and design, distributed
computing, computer networks, security, databases, and software engineering.

Important Concepts

These are several concepts from computer science that you should know and remember since they would be
useful as foundational concepts to understand the other chapters, concepts, and examples better. It’s not an
exhaustive list but should pretty much cover enough to get started.

Algorithms

An algorithm can be described as a sequence of steps, operations, computations, or functions that can

be executed to carry out a specific task. They are basically methods to describe and represent a computer
program formally through a series of operations, which are often described using plain natural language,
mathematical symbols, and diagrams. Typically flowcharts, pseudocode, and natural language are used
extensively to represent algorithms. An algorithm can be as simple as adding two numbers and as complex
as computing the inverse of a matrix.

15

CHAPTER 1 © MACHINE LEARNING BASICS

Programming Languages

A programming language is a language that has its own set of symbols, words, tokens, and operators having
their own significance and meaning. Thus syntax and semantics combine to form a formal language in itself.
This language can be used to write computer programs, which are basically real-world implementations of
algorithms that can be used to specify specific instructions to the computer such that it carries our necessary
computation and operations. Programming languages can be low level like C and Assembly or high level
languages like Java and Python.

Code

This is basically source code that forms the foundation of computer programs. Code is written using
programming languages and consists of a collection of computer statements and instructions to make the
computer perform specific desired tasks. Code helps convert algorithms into programs using programming
languages. We will be using Python to implement most of our real-world Machine Learning solutions.

Data Structures

Data structures are specialized structures that are used to manage data. Basically they are real-world
implementations for abstract data type specifications that can be used to store, retrieve, manage, and
operate on data efficiently. There is a whole suite of data structures like arrays, lists, tuples, records,
structures, unions, classes, and many more. We will be using Python data structures like lists, arrays,
dataframes, and dictionaries extensively to operate on real-world data!

Data Science

The field of Data Science is a very diverse, inter-disciplinary field which encompasses multiple fields that
we depicted in Figure 1-4. Data Science basically deals with principles, methodologies, processes, tools, and
techniques to gather knowledge or information from data (structured as well as unstructured). Data Science
is more of a compilation of processes, techniques, and methodologies to foster a data-driven decision

based culture. In fact Drew Conway’s “Data Science Venn Diagram,” depicted in Figure 1-5, shows the core
components and essence of Data Science, which in fact went viral and became insanely popular!

16

CHAPTER 1 © MACHINE LEARNING BASICS

él. Machine ¢o¢@

Substantive
Expertise

Figure 1-5. Drew Conway’s Data Science Venn diagram

Figure 1-5 is quite intuitive and easy to interpret. Basically there are three major components and
Data Science sits at the intersection of them. Math and statistics knowledge is all about applying various
computational and quantitative math and statistical based techniques to extract insights from data. Hacking
skills basically indicate the capability of handling, processing, manipulating and wrangling data into easy to
understand and analyzable formats. Substantive expertise is basically the actual real-world domain expertise
which is extremely important when you are solving a problem because you need to know about various
factors, attributes, constraints, and knowledge related to the domain besides your expertise in data and
algorithms.

Thus Drew rightly points out that Machine Learning is a combination of expertise on data hacking
skills, math, and statistical learning methods and for Data Science, you need some level of domain expertise
and knowledge along with Machine Learning. You can check out Drew’s personal insights in his article at
http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram, where talks all about the Data
Science Venn diagram. Besides this, we also have Brendan Tierney, who talks about the true nature of Data
Science being a multi-disciplinary field with his own depiction, as shown in Figure 1-6.

17

http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram

CHAPTER 1 © MACHINE LEARNING BASICS

Data Science Is Multidisciplinary
Business ~ Domain

Strategy Knowledge

By Brendan Tierney, 2012

Business)
Analyse Communications
=
Problem
i .o Presentation
. Data Mining

\ Inquisitiveness

Figure 1-6. Brendan Tierney's depiction of Data Science as a true multi-disciplinary field

If you observe his depiction closely, you will see a lot of the domains mentioned here are what we just
talked about in the previous sections and matches a substantial part of Figure 1-4. You can clearly see Data
Science being the center of attention and drawing parts from all the other fields and Machine Learning as a
sub-field.

Mathematics

The field of mathematics deals with numbers, logic, and formal systems. The best definition of mathematics
was coined by Aristotle as “The science of quantity”. The scope of mathematics as a scientific field is huge
spanning across areas including algebra, trigonometry, calculus, geometry, and number theory just to
name a few major fields. Linear algebra and probability are two major sub-fields under mathematics that
are used extensively in Machine Learning and we will be covering a few important concepts from them in
this section. Our major focus will always be on practical Machine Learning, and applied mathematics is an
important aspect for the same. Linear algebra deals with mathematical objects and structures like vectors,
matrices, lines, planes, hyperplanes, and vector spaces. The theory of probability is a mathematical field
and framework used for studying and quantifying events of chance and uncertainty and deriving theorems
and axioms from the same. These laws and axioms help us in reasoning, understanding, and quantifying
uncertainty and its effects in any real-world system or scenario, which helps us in building our Machine
Learning models by leveraging this framework.

18

CHAPTER 1 © MACHINE LEARNING BASICS

Important Concepts

In this section, we discuss some key terms and concepts from applied mathematics, namely linear algebra
and probability theory. These concepts are widely used across Machine Learning and form some of the
foundational structures and principles across Machine Learning algorithms, models, and processes.

Scalar

A scalar usually denotes a single number as opposed to a collection of numbers. A simple example might be
x=>5or x € R, where xis the scalar element pointing to a single number or a real-valued single number.

Vector

A vector is defined as a structure that holds an array of numbers which are arranged in order. This basically
means the order or sequence of numbers in the collection is important. Vectors can be mathematically
denoted as x = [x,, x,, ..., x,], which basically tells us that x is a one-dimensional vector having elements in
the array. Each element can be referred to using an array index determining its position in the vector. The
following snippet shows us how we can represent simple vectors in Python.

In [1]: x = [1, 2, 3, 4, 5]
ceat X
out[1]: [1, 2, 3, 4, 5]
In [2]: import numpy as np
..: x = np.array([1, 2, 3, 4, 5])

.1 print(x)
...t print(type(x))
[12345]
<class 'numpy.ndarray'>

Thus you can see that Python lists as well as numpy based arrays can be used to represent vectors. Each
row in a dataset can act as a one-dimensional vector of n attributes, which can serve as inputs to learning
algorithms.

Matrix

A matrix is a two-dimensional structure that basically holds numbers. It’s also often referred to as a 2D array.
Each element can be referred to using a row and column index as compared to a single vector index in case

mll m12 m13

of vectors. Mathematically, you can depict a matrixas M =|m, ~m,, m, | such that Mis a 3 x 3 matrix
m31 m32 m33

having three rows and three columns and each element is denoted by m _such that r denotes the row index

and c denotes the column index. Matrices can be easily represented as list of lists in Python and we can
leverage the numpy array structure as depicted in the following snippet.

In [3]: m = np.array([[1, 5, 2],

. [4; 7, 4])
: [2, 0, 9]])

19

CHAPTER 1 © MACHINE LEARNING BASICS

In [4]: # view matrix
...t print(m)
[

]
]
]

—r——
N B
o N wuv
O BN

]

In [5]: # view dimensions
...t print(m.shape)
(3, 3)

Thus you can see how we can easily leverage numpy arrays to represent matrices. You can think of
a dataset with rows and columns as a matrix such that the data features or attributes are represented by
columns and each row denotes a data sample. We will be using the same analogy later on in our analyses.
Of course, you can perform matrix operations like add, subtract, products, inverse, transpose, determinants,
and many more. The following snippet shows some popular matrix operations.

In [9]: # matrix transpose
: print('Matrix Transpose:\n', m.transpose(), '\n")

.t # matrix determinant
...t print ('Matrix Determinant:', np.linalg.det(m), '\n')

..t # matrix inverse
: m_inv = np.linalg.inv(m)
: print ('Matrix inverse:\n', m_inv, '\n")

..t # identity matrix (result of matrix x matrix_inverse)
..t iden_m = np.dot(m, m_inv)

: iden_m = np.round(np.abs(iden_m), 0)

: print ('Product of matrix and its inverse:\n', iden_m)

Matrix Transpose:
[[142]
[57 0]
[2 4 9]]

Matrix Determinant: -105.0

Matrix inverse:

[[-0.6 0.42857143 -0.05714286]
[0.26666667 -0.04761905 -0.03809524]
[0.13333333 -0.0952381 0.12380952]]

Product of matrix and its inverse:
[[1. 0. o0.]

[0. 1. o0.]

[0. 0. 1.]]

This should give you a good idea to get started with matrices and their basic operations. More on this is
covered in Chapter 2, “The Python Machine Learning Ecosystem”.

20

http://dx.doi.org/10.1007/978-1-4842-3207-1_2

CHAPTER 1 © MACHINE LEARNING BASICS

Tensor

You can think of a tensor as a generic array. Tensors are basically arrays with a variable number of axes.
An element in a three-dimensional tensor T can be denoted by Txyz where x, y, z denote the three axes for
specifying element T.

Norm

The norm is a measure that is used to compute the size of a vector often also defined as the measure of
distance from the origin to the point denoted by the vector. Mathematically, the pth norm of a vector is
denoted as follows.

l
== (ijp

Such that p 2 1 and p € R. Popular norms in Machine Learning include the L’ norm used extensively in Lasso
regression models and the L? norm, also known as the Euclidean norm, used in ridge regression models.

Eigen Decomposition

This is basically a matrix decomposition process such that we decompose or break down a matrix into a

set of eigen vectors and eigen values. The eigen decomposition of a matrix can be mathematically denoted
by M = V diag(2) V! such that the matrix M has a total of n linearly independent eigen vectors represented
as {v™, v, ..., v} and their corresponding eigen values can be represented as {1,, 1,, ..., 4,}. The matrix V
consists of one eigen vector per column of the matrixi.e., V= [vW, v®, ..., v”] and the vector 4 consists of all
the eigen values togetheri.e., 1=[4, 4, ..., 4].

An eigen vector of the matrix is defined as a non-zero vector such that on multiplying the matrix by the
eigen vector, the result only changes the scale of the eigen vector itself, i.e., the result is a scalar multiplied by
the eigen vector. This scalar is known as the eigen value corresponding to the eigen vector. Mathematically
this can be denoted by Mv = Av where M is our matrix, v is the eigen vector and 4 is the corresponding eigen
value. The following Python snippet depicts how to extract eigen values and eigen vectors from a matrix.

n [4] # eigendecomposition
- np.array([[1, 5, 2],
(4, 7, 4],
(2, 0, 9]])

: eigen vals, eigen vecs = np.linalg.eig(m)

..t print('Eigen Values:', eigen_vals, '\n')
... print('Eigen Vectors:\n', eigen vecs)

Eigen Values: [-1.32455532 11.32455532 7.]
Eigen Vectors:
[[-0.91761521 0.46120352 -0.46829291]

[0.35550789 0.79362022 -0.74926865]
[0.17775394 0.39681011 0.46829291]]

21

CHAPTER 1 © MACHINE LEARNING BASICS

Singular Value Decomposition

The process of singular value decomposition, also known as SVD, is another matrix decomposition or
factorization process such that we are able to break down a matrix to obtain singular vectors and singular
values. Any real matrix will always be decomposed by SVD even if eigen decomposition may not be
applicable in some cases. Mathematically, SVD can be defined as follows. Considering a matrix M having
dimensions m x n such that m denotes total rows and n denotes total columns, the SVD of the matrix can be
represented with the following equation.

M, =U,.S, VI

mxm “mxn © nxn

This gives us the following main components of the decomposition equation.

e U, isanmxmunitary matrix where each column represents a left singular vector

e S isan mxnmatrix with positive numbers on the diagonal, which can also be

mxn

represented as a vector of the singular values
e V! isannXxn unitary matrix where each row represents a right singular vector

In some representations, the rows and columns might be interchanged but the end result should be
the same, i.e., U and V are always orthogonal. The following snippet shows a simple SVD decomposition in
Python.

In [7]: # SVD
...t m = np.array([[2, 5, 2],
(4, 7, 4],
[2, 0, 91])

: U, S, VT = np.linalg.svd(m)
..t print('Getting SVD outputs:-\n")
«o.t print('U:\n', U, "\n")
coot print('S:\n', S, "\n")
<ot print('VT:\n", VT, "\n")

Getting SVD outputs:-

U:
[[0.3831556 -0.39279153 0.83600634]
[0.68811254 -0.48239977 -0.54202545]
[0.61619228 0.78294653 0.0854506]]
S:

[12.10668383 6.91783499 1.25370079]

VT:
[[0.36079164 0.55610321 0.74871798]
[-0.10935467 -0.7720271 0.62611158]
[-0.92621323 0.30777163 0.21772844]]

SVD as a technique and the singular values in particular are very useful in summarization based
algorithms and various other methods like dimensionality reduction.

22

CHAPTER 1 © MACHINE LEARNING BASICS

Random Variable

Used frequently in probability and uncertainty measurement, a random variable is basically a variable that
can take on various values at random. These variables can be of discrete or continuous type in general.

Probability Distribution

A probability distribution is a distribution or arrangement that depicts the likelihood of a random variable
or variables to take on each of its probable states. There are usually two main types of distributions based on
the variable being discrete or continuous.

Probability Mass Function

A probability mass function, also known as PME is a probability distribution over discrete random variables.
Popular examples include the Poisson and binomial distributions.

Probability Density Function

A probability density function, also known as PDE, is a probability distribution over continuous random
variables. Popular examples include the normal, uniform, and student’s T distributions.

Marginal Probability

The marginal probability rule is used when we already have the probability distribution for a set of random
variables and we want to compute the probability distribution for a subset of these random variables. For
discrete random variables, we can define marginal probability as follows.

P(X):;P(x'y)

For continuous random variables, we can define it using the integration operation as follows.

p(x)=[p(x.y)dy

Conditional Probability

The conditional probability rule is used when we want to determine the probability that an event is going to
take place, such that another event has already taken place. This is mathematically represented as follows.

p(x] y)=2L2)

P(y)

This tells us the conditional probability of x, given that y has already taken place.

23

CHAPTER 1 © MACHINE LEARNING BASICS

Bayes Theorem

This is another rule or theorem which is useful when we know the probability of an event of interest P(A), the
conditional probability for another event based on our event of interest P(B | A) and we want to determine
the conditional probability of our event of interest given the other event has taken place P(A | B). This can be
defined mathematically using the following expression.

P(B|4)P(4)

P(A|B)= P(8)

such that A and B are events and P(B)= ZP(B | A)P(A) .

Statistics

The field of statistics can be defined as a specialized branch of mathematics that consists of frameworks
and methodologies to collect, organize, analyze, interpret, and present data. Generally this falls more under
applied mathematics and borrows concepts from linear algebra, distributions, probability theory, and
inferential methodologies. There are two major areas under statistics that are mentioned as follows.

e Descriptive statistics
e Inferential statistics

The core component of any statistical process is data. Hence typically data collection is done first, which
could be in global terms, often called a population or a more restricted subset due to various constraints
often knows as a sample. Samples are usually collected manually, from surveys, experiments, data stores,
and observational studies. From this data, various analyses are carried out using statistical methods.

Descriptive statistics is used to understand basic characteristics of the data using various aggregation
and summarization measures to describe and understand the data better. These could be standard
measures like mean, median, mode, skewness, kurtosis, standard deviation, variance, and so on. You can
refer to any standard book on statistics to deep dive into these measures if you're interested. The following
snippet depicts how to compute some essential descriptive statistical measures.

In [74]: # descriptive statistics
: import scipy as sp
...t import numpy as np

... # get data
: nums = np.random.randint(1,20, size=(1,15))[0]
: print('Data: ', nums)

...t # get descriptive stats

...t print ('Mean:', sp.mean(nums))

... print ('Median:', sp.median(nums))
.t print ('Mode:', sp.stats.mode(nums))
: print ('Standard Deviation:', sp.std(nums))
: print ('Variance:', sp.var(nums))

...t print ('Skew:', sp.stats.skew(nums))

..t print ('Kurtosis:', sp.stats.kurtosis(nums))

24

CHAPTER 1 © MACHINE LEARNING BASICS

Data: [219 8 10 17 13 18 9 19 16 4 14 16 15 5]
Mean: 12.3333333333

Median: 14.0

Mode: ModeResult(mode=array([16]), count=array([2]))
Standard Deviation: 5.44875113112

Variance: 29.6888888889

Skew: -0.49820055879944575

Kurtosis: -1.0714842769550714

Libraries and frameworks like pandas, scipy, and numpy in general help us compute descriptive
statistics and summarize data easily in Python. We cover these frameworks as well as basic data analysis and
visualization in Chapters 2 and 3.

Inferential statistics are used when we want to test hypothesis, draw inferences, and conclusions about
various characteristics of our data sample or population. Frameworks and techniques like hypothesis
testing, correlation, and regression analysis, forecasting, and predictions are typically used for any form
of inferential statistics. We look at this in much detail in subsequent chapters when we cover predictive
analytics as well as time series based forecasting.

Data Mining

The field of data mining involves processes, methodologies, tools and techniques to discover and extract
patterns, knowledge, insights and valuable information from non-trivial datasets. Datasets are defined
as non-trivial when they are substantially huge usually available from databases and data warehouses.
Once again, data mining itself is a multi-disciplinary field, incorporating concepts and techniques from
mathematics, statistics, computer science, databases, Machine Learning and Data Science. The term is a
misnomer in general since the “mining” refers to the mining of actual insights or information from the data
and not data itself! In the whole process of KDD or Knowledge Discovery in Databases, data mining is the
step where all the analysis takes place.

In general, both KDD as well as data mining are closely linked with Machine Learning since they
are all concerned with analyzing data to extract useful patterns and insights. Hence methodologies,
concepts, techniques, and processes are shared among them. The standard process for data mining followed
in the industry is known as the CRISP-DM model, which we discuss in more detail in an upcoming section in
this chapter.

Artificial Intelligence

The field of artificial Intelligence encompasses multiple sub-fields including Machine Learning, natural
language processing, data mining, and so on. It can be defined as the art, science and engineering of making
intelligent agents, machines and programs. The field aims to provide solutions for one simple yet extremely
tough objective, “Can machines think, reason, and act like human beings?” Al in fact existed as early as the
1300s when people started asking such questions and conducting research and development on building
tools that could work on concepts instead of numbers like a calculator does. Progress in Al took place in a
steady pace with discoveries and inventions by Alan Turing, McCullouch, and Pitts Artificial Neurons. Al was
revived once again after a slowdown till the 1980s with success of expert systems, the resurgence of neural
networks thanks to Hopfield, Rumelhart, McClelland, Hinton, and many more. Faster and better computation
thanks to Moore’s Law led to fields like data mining, Machine Learning and even Deep Learning come into
prominence to solve complex problems that would otherwise have been impossible to solve using traditional
approaches. Figure 1-7 shows some of the major facets under the broad umbrella of AL

25

http://dx.doi.org/10.1007/978-1-4842-3207-1_2
http://dx.doi.org/10.1007/978-1-4842-3207-1_3

CHAPTER 1 © MACHINE LEARNING BASICS

Deep Leamning
% Predictive Analytics

g——————————————— Machine Leamning l Anomaly Detection ———
Trend Forecasting ———

ﬁ Machine Translation =
S

Summarization & Clustering

Robotics

|————— Natwral Language Processing

Classification & Categorization

j———————— Expert Systems

Information Retrieval & Extraction

e Speech Recognition —C Text to Speech ———
Artificial Speech to Text

Intelligence

B Planning & Scheduling

M Search& Optimization

Figure 1-7. Diverse major facets under the AI umbrella

Some of the main objectives of Al include emulation of cognitive functions also known as cognitive
learning, semantics, and knowledge representation, learning, reasoning, problem solving, planning, and
natural language processing. Al borrows tools, concepts, and techniques from statistical learning, applied
mathematics, optimization methods, logic, probability theory, Machine Learning, data mining, pattern
recognition, and linguistics. Al is still evolving over time and a lot of innovation is being done in this
field including some of the latest discoveries and inventions like self-driving cars, chatbots, drones, and
intelligent robots.

Natural Language Processing

The field of Natural Language Processing (NLP) is a multi-disciplinary field combining concepts from
computational linguistics, computer science and artificial intelligence. NLP involves the ability to

make machines process, understand, and interact with natural human languages. The major objective

of applications or systems built using NLP is to enable interactions between machines and natural
languages that have evolved over time. Major challenges in this aspect include knowledge and semantics
representation, natural language understanding, generation, and processing. Some of the major applications
of NLP are mentioned as follows.

e Machine translation

e Speech recognition

e Question answering systems

e Context recognition and resolution
e Textsummarization

e Text categorization

26

CHAPTER 1 © MACHINE LEARNING BASICS

e Information extraction
e Sentiment and emotion analysis
e Topic segmentation

Using techniques from NLP and text analytics, you can work on text data to process, annotate, classify,
cluster, summarize, extract semantics, determine sentiment, and much more! The following example
snippet depicts some basic NLP operations on textual data where we annotate a document (text sentence)
with various components like parts of speech, phrase level tags, and so on based on its constituent grammar.
You can refer to page 159 of Text Analytics with Python (Apress; Dipanjan Sarkar, 2016) for more details on
constituency parsing.

from nltk.parse.stanford import StanfordParser
sentence = 'The quick brown fox jumps over the lazy dog'

create parser object
scp = StanfordParser(path_to jar='E:/stanford/stanford-parser-full-2015-04-20/stanford-
parser.jar',

path_to _models jar='E:/stanford/stanford-parser-full-2015-04-20/stanford-
parser-3.5.2-models.jar")

get parse tree
result = list(scp.raw_parse(sentence))

tree = result[o0]

In [98]: # print the constituency parse tree

...t print(tree)
(ROOT
(NP
(NP (DT The) (33 quick) (33 brown) (NN fox))
(NP

(NP (NNS jumps))
(PP (IN over) (NP (DT the) (33 lazy) (NN dog))))))

In [99]: # visualize constituency parse tree
..: tree.draw()

27

CHAPTER 1 © MACHINE LEARNING BASICS

ROOT
NlP
NMP
of’ﬂ“‘m NMP
TI‘Ie qul:ck orolwn fclnx Nllus IN NP

I I s
jumps over DT JJ NN

I I
the lazy dog

Figure 1-8. Constituency parse tree for our sample sentence

Thus you can clearly see that Figure 1-8 depicts the constituency grammar based parse tree for our
sample sentence, which consists of multiple noun phrases (NP). Each phrase has several words that are also
annotated with their own parts of speech (POS) tags. We cover more on processing and analyzing textual
data for various steps in the Machine Learning pipeline as well as practical use cases in subsequent chapters.

Deep Learning

The field of Deep Learning, as depicted earlier, is a sub-field of Machine Learning that has recently come
into much prominence. Its main objective is to get Machine Learning research closer to its true goal

of “making machines intelligent”. Deep Learning is often termed as a rebranded fancy term for neural
networks. This is true to some extent but there is definitely more to Deep Learning than just basic neural
networks. Deep Learning based algorithms involves the use of concepts from representation learning
where various representations of the data are learned in different layers that also aid in automated
feature extraction from the data. In simple terms, a Deep Learning based approach tries to build machine
intelligence by representing data as a layered hierarchy of concepts, where each layer of concepts is built
from other simpler layers. This layered architecture itself is one of the core components of any Deep
Learning algorithm.

In any basic supervised Machine Learning technique, we basically try to learn a mapping between
our data samples and our output and then try to predict output for newer data samples. Representational
learning tries to understand the representations in the data itself besides learning mapping from inputs
to outputs. This makes Deep Learning algorithms extremely powerful as compared to regular techniques,
which require significant expertise in areas like feature extraction and engineering. Deep Learning is
also extremely effective with regard to its performance as well as scalability with more and more data as
compared to older Machine Learning algorithms. This is depicted in Figure 1-9 based on a slide from
Andrew Ng's talk at the Extract Data Conference.

28

CHAPTER 1 © MACHINE LEARNING BASICS

Why deep learning

Deep learning

Performance

Amount of data

How do data science techniques scale with amount of data?

Figure 1-9. Performance comparison of Deep Learning and traditional Machine Learning by Andrew Ng

Indeed, as rightly pointed out by Andrew Ng, there have been several noticeable trends and characteristics
related to Deep Learning that we have noticed over the past decade. They are summarized as follows.

Deep Learning algorithms are based on distributed representational learning and
they start performing better with more data over time.

Deep Learning could be said to be a rebranding of neural networks, but there is a lot
into it compared to traditional neural networks.

Better software frameworks like tensorflow, theano, caffe, mxnet, and keras,
coupled with superior hardware have made it possible to build extremely complex,
multi-layered Deep Learning models with huge sizes.

Deep Learning has multiple advantages related to automated feature extraction as
well as performing supervised learning operations, which have helped data scientists
and engineers solve increasingly complex problems over time.

The following points describe the salient features of most Deep Learning algorithms, some of which we
will be using in this book.

Hierarchical layered representation of concepts. These concepts are also called
features in Machine Learning terminology (data attributes).

Distributed representational learning of the data happens through a multi-layered
architecture (unsupervised learning).

More complex and high-level features and concepts are derived from simpler, low-
level features.

29

CHAPTER 1 © MACHINE LEARNING BASICS

e A “deep” neural network usually is considered to have at least more than one hidden
layer besides the input and output layers. Usually it consists of a minimum of three
to four hidden layers.

e Deep architectures have a multi-layered architecture where each layer consists of
multiple non-linear processing units. Each layer’s input is the previous layer in the
architecture. The first layer is usually the input and the last layer is the output.

e Can perform automated feature extraction, classification, anomaly detection, and
many other Machine Learning tasks.

This should give you a good foundational grasp of the concepts pertaining to Deep Learning. Suppose
we had a real-world problem of object recognition from images. Figure 1-10 will give us a good idea of how
typical Machine Learning and Deep Learning pipelines differ (Source: Yann LeCun).

Deep Learning = Learning HierarchicakRepresentations

Y LeCun

@ Traditional Pattern Recognition: Fixed/Handcrafted Feature Extractor
Feature
Extractor

Feature " Mid-Level
Extractor Features

Figure 1-10. Comparing various learning pipelines by Yann LeCun

You can clearly see how Deep Learning methods involve a hierarchical layer representation of features
and concept from the raw data as compared to other Machine Learning methods. We conclude this section
with a brief coverage of some essential concepts pertaining to Deep Learning.

30

CHAPTER 1 © MACHINE LEARNING BASICS

Important Concepts

In this section, we discuss some key terms and concepts from Deep Learning algorithms and architecture.
This should be useful in the future when you are building your own Deep Learning models.

Artificial Neural Networks

An Artificial Neural Network (ANN) is a computational model and architecture that simulates biological
neurons and the way they function in our brain. Typically, an ANN has layers of interconnected nodes. The
nodes and their inter-connections are analogous to the network of neurons in our brain. A typical ANN has
an input layer, an output layer, and at least one hidden layer between the input and output with
inter-connections, as depicted in Figure 1-11

Hidden
Input '

Output

Figure 1-11. A typical artificial neural network

Any basic ANN will always have multiple layers of nodes, specific connection patterns and links
between the layers, connection weights and activation functions for the nodes/neurons that convert
weighted inputs to outputs. The process of learning for the network typically involves a cost function and the
objective is to optimize the cost function (typically minimize the cost). The weights keep getting updated in
the process of learning.

31

CHAPTER 1 © MACHINE LEARNING BASICS

Backpropagation

The backpropagation algorithm is a popular technique to train ANNs and it led to a resurgence in the
popularity of neural networks in the 1980s. The algorithm typically has two main stages—propagation and
weight updates. They are described briefly as follows.

1. Propagation

a. Theinput data sample vectors are propagated forward through the neural
network to generate the output values from the output layer.

b. Compare the generated output vector with the actual/desired output vector
for that input data vector.

c. Compute difference in error at the output units.

d. Backpropagate error values to generate deltas at each node/neuron.

2. Weight Update

a. Compute weight gradients by multiplying the output delta (error) and input
activation.

b. Use learning rate to determine percentage of the gradient to be subtracted
from original weight and update the weight of the nodes.

These two stages are repeated multiple times with multiple iterations/epochs until we get satisfactory
results. Typically backpropagation is used along with optimization algorithms or functions like stochastic
gradient descent.

Multilayer Perceptrons

A multilayer perceptron, also known as MLP, is a fully connected, feed-forward artificial neural network with
at least three layers (input, output, and at least one hidden layer) where each layer is fully connected to the
adjacent layer. Each neuron usually is a non-linear functional processing unit. Backpropagation is typically
used to train MLPs and even deep neural nets are MLPs when they have multiple hidden layers. Typically
used for supervised Machine Learning tasks like classification.

Convolutional Neural Networks

A convolutional neural network, also known as convnet or CNN, is a variant of the artificial neural network,
which specializes in emulating functionality and behavior of our visual cortex. CNNs typically consist of the
following three components.

e Multiple convolutional layers, which consist of multiple filters that are convolved
across the height and width of the input data (e.g., image raw pixels) by basically
computing a dot product to give a two-dimensional activation map. On stacking
all the maps across all the filters, we end up getting the final output from a
convolutional layer.

32

CHAPTER 1 © MACHINE LEARNING BASICS

e Pooling layers, which are basically layers that perform non-linear down sampling to
reduce the input size and number of parameters from the convolutional layer output
to generalize the model more, prevent overfitting and reduce computation time. Filters
go through the heights and width of the input and reduce it by taking an aggregate like
sum, average, or max. Typical pooling components are average or max pooling.

e Fully connected MLPs to perform tasks such as image classification and object
recognition.

A typical CNN architecture with all the components is depicted as follows in Figure 1-12, which is a
LeNet CNN model (Source: deeplearning.net)

Input layer (S1) 4 feature maps

(C1) 4 feature maps (52) 6 feature maps (C2) 6 feature maps

L convolution layer | sub-sampling layer | conveolution layer | sub-sampling layer l fully connected HLPJ

Figure 1-12. LeNet CNN model (Source: deeplearning.net)

Recurrent Neural Networks

A recurrent neural network, also known as RNN, is a special type of an artificial neural network that allows
persisting information based on past knowledge by using a special type of looped architecture. They are used a
lot in areas related to data with sequences like predicting the next word of a sentence. These looped networks
are called recurrent because they perform the same operations and computation for each and every element
in a sequence of input data. RNNs have memory that helps in capturing information from past sequences.
Figure 1-13 (Source: Colah’s blog at http://colah.github.io/posts/2015-08-Understanding-LSTMs/) shows
the typical structure of a RNN and how it works by unrolling the network based on input sequence length to be

fed at any point in time.
A

® ®
R A

6 & o

An unrolled recurrent neural network.

>

Figure 1-13. A recurrent neural network (Source: Colah’s Blog)

33

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

CHAPTER 1 © MACHINE LEARNING BASICS

Figure 1-13 clearly depicts how the unrolled network will accept sequences of length ¢ in each pass of
the input data and operate on the same.

Long Short-Term Memory Networks

RNNs are good in working on sequence based data but as the sequences start increasing, they start losing
historical context over time in the sequence and hence outputs are not always what is desired. This is where
Long Short-Term Memory Networks, popularly known as LSTMs, come into the picture! Introduced by
Hochreiter & Schmidhuber in 1997, LSTMs can remember information from really long sequence based
data and prevent issues like the vanishing gradient problem, which typically occurs in ANNSs trained with
backpropagation. LSTMs usually consist of three or four gates, including input, output, and a special forget
gate. Figure 1-14 shows a high-level pictorial representation of a single LSTM cell.

forget gate
self-recurrent

connection
)
memory cell » memory cell
input output
Input gate output gate

Figure 1-14. An LSTM cell (Source: deeplearning.net)

The input gate usually can allow or deny incoming signals or inputs to alter the memory cell state. The
output gate usually propagates the value to other neurons as needed. The forget gate controls the memory
cell’s self-recurrent connection to remember or forget previous states as necessary. Multiple LSTM cells are
usually stacked in any Deep Learning network to solve real-world problems like sequence prediction.

Autoencoders

An autoencoder is a specialized Artificial Neural Network that is primarily used for performing unsupervised
Machine Learning tasks. Its main objective is to learn data representations, approximations, and encodings.
Autoencoders can be used for building generative models, performing dimensionality reduction, and
detecting anomalies.

Machine Learning Methods

Machine Learning has multiple algorithms, techniques, and methodologies that can be used to build models
to solve real-world problems using data. This section tries to classify these Machine Learning methods
under some broad categories to give some sense to the overall landscape of Machine Learning methods that
are ultimately used to perform specific Machine Learning tasks we discussed in a previous section. Typically
the same Machine Learning methods can be classified in multiple ways under multiple umbrellas. Following
are some of the major broad areas of Machine Learning methods.

34

CHAPTER 1 © MACHINE LEARNING BASICS

1. Methods based on the amount of human supervision in the learning process
a. Supervised learning
b. Unsupervised learning
c. Semi-supervised learning
d. Reinforcement learning

2. Methods based on the ability to learn from incremental data samples
a. Batchlearning
b. Online learning

3. Methods based on their approach to generalization from data samples
a. Instance based learning
b. Model based learning

We briefly cover the various types of learning methods in the following sections to build a good
foundation with regard to Machine Learning methods and the type of tasks they usually solve. This should
give you enough knowledge to start understanding which methods should be applied in what scenarios
when we tackle various real-world use cases and problems in the subsequent chapters of the book.

Discussing mathematical details and internals of each and every Machine Learning algorithm would be out
of the current scope and intent of the book, since the focus is more on solving real-world problems by applying
Machine Learning and not on theoretical Machine Learning. Hence you are encouraged to refer to standard
Machine Learning references like Pattern Recognition and Machine Learning, Christopher Bishop, 2006, and
The Elements of Statistical Learning, Robert Tibshirani et al., 2001, for more theoretical and mathematical
details on the internals of Machine Learning algorithms and methods.

Supervised Learning

Supervised learning methods or algorithms include learning algorithms that take in data samples (known
as training data) and associated outputs (known as labels or responses) with each data sample during the
model training process. The main objective is to learn a mapping or association between input data samples
x and their corresponding outputs y based on multiple training data instances. This learned knowledge can
then be used in the future to predict an output y’ for any new input data sample x’ which was previously
unknown or unseen during the model training process. These methods are termed as supervised because
the model learns on data samples where the desired output responses/labels are already known beforehand
in the training phase.

Supervised learning basically tries to model the relationship between the inputs and their
corresponding outputs from the training data so that we would be able to predict output responses for new
data inputs based on the knowledge it gained earlier with regard to relationships and mappings between the
inputs and their target outputs. This is precisely why supervised learning methods are extensively used in
predictive analytics where the main objective is to predict some response for some input data that’s typically
fed into a trained supervised ML model. Supervised learning methods are of two major classes based on the
type of ML tasks they aim to solve.

35

CHAPTER 1 © MACHINE LEARNING BASICS

e (lassification
e Regression

Let’s look at these two Machine Learning tasks and observe the subset of supervised learning methods
that are best suited for tackling these tasks.

Classification

The classification based tasks are a sub-field under supervised Machine Learning, where the key objective
is to predict output labels or responses that are categorical in nature for input data based on what the model
has learned in the training phase. Output labels here are also known as classes or class labels are these are
categorical in nature meaning they are unordered and discrete values. Thus, each output response belongs
to a specific discrete class or category.

Suppose we take a real-world example of predicting the weather. Let’s keep it simple and say we
are trying to predict if the weather is sunny or rainy based on multiple input data samples consisting of
attributes or features like humidity, temperature, pressure, and precipitation. Since the prediction can be
either sunny or rainy, there are a total of two distinct classes in total; hence this problem can also be termed
as a binary classification problem. Figure 1-15 depicts the binary weather classification task of predicting
weather as either sunny or rainy based on training the supervised model on input data samples having
feature vectors, (precipitation, humidity, pressure, and temperature) for each data sample/observation and
their corresponding class labels as either sunny or rainy.

Precipitation | Humidity Pressure | Temperature Output Labeis'

Corresponds
to

Training Data

Training

Precipitation | Humidity Pressure | Temperature Predicted Label
P Supervised Model — Predict —

New Previously Unseen Input

Figure 1-15. Supervised learning: binary classification for weather prediction

A task where the total number of distinct classes is more than two becomes a multi-class classification
problem where each prediction response can be any one of the probable classes from this set. A simple
example would be trying to predict numeric digits from scanned handwritten images. In this case it becomes
a 10-class classification problem because the output class label for any image can be any digit from 0 - 9. In

36

CHAPTER 1 © MACHINE LEARNING BASICS

both the cases, the output class is a scalar value pointing to one specific class. Multi-label classification tasks
are such that based on any input data sample, the output response is usually a vector having one or more
than one output class label. A simple real-world problem would be trying to predict the category of a news
article that could have multiple output classes like news, finance, politics, and so on.

Popular classification algorithms include logistic regression, support vector machines, neural networks,
ensembles like random forests and gradient boosting, K-nearest neighbors, decision trees, and many more.

Regression

Machine Learning tasks where the main objective is value estimation can be termed as regression tasks.
Regression based methods are trained on input data samples having output responses that are continuous
numeric values unlike classification, where we have discrete categories or classes. Regression models
make use of input data attributes or features (also called explanatory or independent variables) and their
corresponding continuous numeric output values (also called as response, dependent, or outcome variable)
to learn specific relationships and associations between the inputs and their corresponding outputs. With
this knowledge, it can predict output responses for new, unseen data instances similar to classification but
with continuous numeric outputs.

One of the most common real-world examples of regression is prediction of house prices. You can build
a simple regression model to predict house prices based on data pertaining to land plot areas in square feet.
Figure 1-16 shows two possible regression models based on different methods to predict house prices based
on plot area.

Linear Regression Multiple Regression (Polynomial)

3

<
.

House Price ($)
House Price ()

xw

Plot Area (Sq. feet) X Plot Area (Sq. feet)

Figure 1-16. Supervised learning: regression models for house price prediction

The basic idea here is that we try to determine if there is any relationship or association between the
data feature plot area and the outcome variable, which is the house price and is what we want to predict.
Thus once we learn this trend or relationship depicted in Figure 1-16, we can predict house prices in the
future for any given plot of land. If you have noticed the figure closely, we depicted two types of models on
purpose to show that there can be multiple ways to build a model on your training data. The main objective
is to minimize errors during training and validating the model so that it generalized well, does not overfit or
get biased only to the training data and performs well in future predictions.

Simple linear regression models try to model relationships on data with one feature or explanatory
variable x and a single response variable y where the objective is to predict y. Methods like ordinary least
squares (OLS) are typically used to get the best linear fit during model training.

37

CHAPTER 1 © MACHINE LEARNING BASICS

Multiple regression is also known as multivariable regression. These methods try to model data where we
have one response output variable y in each observation but multiple explanatory variables in the form of a
vector Xinstead of a single explanatory variable. The idea is to predict y based on the different features present
in X. A real-world example would be extending our house prediction model to build a more sophisticated model
where we predict the house price based on multiple features instead of just plot area in each data sample. The
features could be represented in a vector as plot area, number of bedrooms, number of bathrooms, total floors,
furnished, or unfurnished. Based on all these attributes, the model tries to learn the relationship between each
feature vector and its corresponding house price so that it can predict them in the future.

Polynomial regression is a special case of multiple regression where the response variable y is modeled
as an nth degree polynomial of the input feature x. Basically it is multiple regression, where each feature in
the input feature vector is a multiple of x. The model on the right in Figure 1-16 to predict house prices is a
polynomial model of degree 2.

Non-linear regression methods try to model relationships between input features and outputs based on
a combination of non-linear functions applied on the input features and necessary model parameters.

Lasso regression is a special form of regression that performs normal regression and generalizes the
model well by performing regularization as well as feature or variable selection. Lasso stands for least absolute
shrinkage and selection operator. The L1 norm is typically used as the regularization term in lasso regression.

Ridge regression is another special form of regression that performs normal regression and generalizes
the model by performing regularization to prevent overfitting the model. Typically the L2 norm is used as the
regularization term in ridge regression.

Generalized linear models are generic frameworks that can be used to model data predicting different
types of output responses, including continuous, discrete, and ordinal data. Algorithms like logistic
regression are used for categorical data and ordered probit regression for ordinal data.

Unsupervised Learning

Supervised learning methods usually require some training data where the outcomes which we are trying
to predict are already available in the form of discrete labels or continuous values. However, often we do not
have the liberty or advantage of having pre-labeled training data and we still want to extract useful insights
or patterns from our data. In this scenario, unsupervised learning methods are extremely powerful. These
methods are called unsupervised because the model or algorithm tries to learn inherent latent structures,
patterns and relationships from given data without any help or supervision like providing annotations in the
form of labeled outputs or outcomes.

Unsupervised learning is more concerned with trying to extract meaningful insights or information
from data rather than trying to predict some outcome based on previously available supervised training
data. There is more uncertainty in the results of unsupervised learning but you can also gain a lot of
information from these models that was previously unavailable to view just by looking at the raw data.
Often unsupervised learning could be one of the tasks involved in building a huge intelligence system. For
example, we could use unsupervised learning to get possible outcome labels for tweet sentiments by using
the knowledge of the English vocabulary and then train a supervised model on similar data points and their
outcomes which we obtained previously through unsupervised learning. There is no hard and fast rule with
regard to using just one specific technique. You can always combine multiple methods as long as they are
relevant in solving the problem. Unsupervised learning methods can be categorized under the following
broad areas of ML tasks relevant to unsupervised learning.

e Clustering
¢ Dimensionality reduction
e Anomaly detection

e Association rule-mining

38

CHAPTER 1 © MACHINE LEARNING BASICS

We explore these tasks briefly in the following sections to get a good feel of how unsupervised learning
methods are used in the real world.

Clustering

Clustering methods are Machine Learning methods that try to find patterns of similarity and relationships
among data samples in our dataset and then cluster these samples into various groups, such that each group
or cluster of data samples has some similarity, based on the inherent attributes or features. These methods
are completely unsupervised because they try to cluster data by looking at the data features without any
prior training, supervision, or knowledge about data attributes, associations, and relationships.

Consider a real-world problem of running multiple servers in a data center and trying to analyze logs
for typical issues or errors. Our main task is to determine the various kinds of log messages that usually
occur frequently each week. In simple words, we want to group log messages into various clusters based on
some inherent characteristics. A simple approach would be to extract features from the log messages, which
would be in textual format and apply clustering on the same and group similar log messages together based
on similarity in content. Figure 1-17 shows how clustering would solve this problem. Basically we have raw
log messages to start with. Our clustering system would employ feature extraction to extract features from
text like word occurrences, phrase occurrences, and so on. Finally, a clustering algorithm like K-means or
hierarchical clustering would be employed to group or cluster messages based on similarity of their
inherent features.

Gustor {sop sHribute)
[s, fail, ¢rasn, futl
[ram, memory, tull, leak

[epu. processor, hang, cras
CLUSTERING SYSTEM |:>)

RAW LOG MESSAGES CLUSTERED LOG MESSAGES

Figure 1-17. Unsupervised learning: clustering log messages

It is quite clear from Figure 1-17 that our systems have three distinct clusters of log messages where
the first cluster depicts disk issues, the second cluster is about memory issues, and the third cluster is about
processor issues. Top feature words that helped in distinguishing the clusters and grouping similar data
samples (logs) together are also depicted in the figure. Of course, sometimes some features might be present
across multiple data samples hence there can be slight overlap of clusters too since this is unsupervised
learning. However, the main objective is always to create clusters such that elements of each cluster are near
each other and far apart from elements of other clusters.

There are various types of clustering methods that can be classified under the following major approaches.

e Centroid based methods such as K-means and K-medoids

e Hierarchical clustering methods such as agglomerative and divisive (Ward’s, affinity
propagation)

e Distribution based clustering methods such as Gaussian mixture models

e Density based methods such as dbscan and optics.

39

CHAPTER 1 © MACHINE LEARNING BASICS

Besides this, we have several methods that recently came into the clustering landscape, like birch
and clarans.

Dimensionality Reduction

Once we start extracting attributes or features from raw data samples, sometimes our feature space gets
bloated up with a humongous number of features. This poses multiple challenges including analyzing and
visualizing data with thousands or millions of features, which makes the feature space extremely complex
posing problems with regard to training models, memory, and space constraints. In fact this is referred

to as the “curse of dimensionality”. Unsupervised methods can also be used in these scenarios, where we
reduce the number of features or attributes for each data sample. These methods reduce the number of
feature variables by extracting or selecting a set of principal or representative features. There are multiple
popular algorithms available for dimensionality reduction like Principal Component Analysis (PCA), nearest
neighbors, and discriminant analysis. Figure 1-18 shows the output of a typical feature reduction process
applied to a Swiss Roll 3D structure having three dimensions to obtain a two-dimensional feature space for
each data sample using PCA.

Original 3-D data (Swiss Roll) 2-D data (after PCA)

I o Dimensionality 293 .
| Reduction *e - s
_.--'/,__ ! _ o o R 2
/ iz - — < o o L ‘_'... B
h—_—~——-—______X[=r

Figure 1-18. Unsupervised learning: dimensionality reduction

From Figure 1-18, it is quite clear that each data sample originally had three features or dimensions,
namely D(x1, x2, x3) and after applying PCA, we reduce each data sample from our dataset into two
dimensions, namely D’(z1, z2). Dimensionality reduction techniques can be classified in two major
approaches as follows.

e Feature Selection methods: Specific features are selected for each data sample from
the original list of features and other features are discarded. No new features are
generated in this process.

¢ Feature Extraction methods: We engineer or extract new features from the original
list of features in the data. Thus the reduced subset of features will contain newly
generated features that were not part of the original feature set. PCA falls under this
category.

40

CHAPTER 1 © MACHINE LEARNING BASICS

Anomaly Detection

The process of anomaly detection is also termed as outlier detection, where we are interested in finding

out occurrences of rare events or observations that typically do not occur normally based on historical

data samples. Sometimes anomalies occur infrequently and are thus rare events, and in other instances,
anomalies might not be rare but might occur in very short bursts over time, thus have specific patterns.
Unsupervised learning methods can be used for anomaly detection such that we train the algorithm

on the training dataset having normal, non-anomalous data samples. Once it learns the necessary data
representations, patterns, and relations among attributes in normal samples, for any new data sample, it
would be able to identify it as anomalous or a normal data point by using its learned knowledge. Figure 1-19
depicts some typical anomaly detection based scenarios where you could apply supervised methods like
one-class SVM and unsupervised methods like clustering, K-nearest neighbors, auto-encoders, and so on to
detect anomalies based on data and its features.

Anomaly Anomaly

______Ncr'mal‘
OOO OOOQ\
© 00 oO)
\QO OO

‘i——
i i Il i

(

Figure 1-19. Unsupervised learning: anomaly detection

Anomaly detection based methods are extremely popular in real-world scenarios like detection of
security attacks or breaches, credit card fraud, manufacturing anomalies, network issues, and many more.

Association Rule-Mining

Typically association rule-mining is a data mining method use to examine and analyze large transactional
datasets to find patterns and rules of interest. These patterns represent interesting relationships and
associations, among various items across transactions. Association rule-mining is also often termed as
market basket analysis, which is used to analyze customer shopping patterns. Association rules help in
detecting and predicting transactional patterns based on the knowledge it gains from training transactions.
Using this technique, we can answer questions like what items do people tend to buy together, thereby
indicating frequent item sets. We can also associate or correlate products and items, i.e., insights like people
who buy beer also tend to buy chicken wings at a pub. Figure 1-20 shows how a typical association rule-
mining method should work ideally on a transactional dataset.

41

CHAPTER 1 © MACHINE LEARNING BASICS

TRANSACTIONS FREQUENT ITEMSETS
2 By L SO

-@]_\%‘) ASSOCIATION 2. @&
RULE MINING R
3. () 9

-
@oo 4@(&)

Figure 1-20. Unsupervised learning: association rule-mining

From Figure 1-20, you can clearly see that based on different customer transactions over a period of
time, we have obtained the items that are closely associated and customers tend to buy them together. Some
of these frequent item sets are depicted like {meat, eggs}, {milk, eggs} and so on. The criterion of determining
good quality association rules or frequent item sets is usually done using metrics like support, confidence,
and lift.

This is an unsupervised method, because we have no idea what the frequent item sets are or which
items are more strongly associated with which items beforehand. Only after applying algorithms like the
apriori algorithm or FP-growth, can we detect and predict products or items associated closely with each
other and find conditional probabilistic dependencies. We cover association rule-mining in further details in
Chapter 8.

Semi-Supervised Learning

The semi-supervised learning methods typically fall between supervised and unsupervised learning
methods. These methods usually use a lot of training data that’s unlabeled (forming the unsupervised
learning component) and a small amount of pre-labeled and annotated data (forming the supervised
learning component). Multiple techniques are available in the form of generative methods, graph based
methods, and heuristic based methods.

A simple approach would be building a supervised model based on labeled data, which is limited, and
then applying the same to large amounts of unlabeled data to get more labeled samples, train the model
on them and repeat the process. Another approach would be to use unsupervised algorithms to cluster
similar data samples, use human-in-the-loop efforts to manually annotate or label these groups, and then
use a combination of this information in the future. This approach is used in many image tagging systems.
Covering semi-supervised methods would be out of the present scope of this book.

Reinforcement Learning

The reinforcement learning methods are a bit different from conventional supervised or unsupervised
methods. In this context, we have an agent that we want to train over a period of time to interact with a
specific environment and improve its performance over a period of time with regard to the type of actions it
performs on the environment. Typically the agent starts with a set of strategies or policies for interacting with
the environment. On observing the environment, it takes a particular action based on a rule or policy and by
observing the current state of the environment. Based on the action, the agent gets a reward, which could be
beneficial or detrimental in the form of a penalty. It updates its current policies and strategies if needed and

42

http://dx.doi.org/10.1007/978-1-4842-3207-1_8

CHAPTER 1 " MACHINE LEARNING BASICS
this iterative process continues till it learns enough about its environment to get the desired rewards. The
main steps of a reinforcement learning method are mentioned as follows.

1. Prepare agent with set of initial policies and strategy
Observe environment and current state
Select optimal policy and perform action
Get corresponding reward (or penalty)

Update policies if needed

@ @ » w DN

Repeat Steps 2 - 5 iteratively until agent learns the most optimal policies

Consider a real-world problem of trying to make a robot or a machine learn to play chess. In this case
the agent would be the robot and the environment and states would be the chessboard and the positions of
the chess pieces. A suitable reinforcement learning methodology is depicted in Figure 1-21.

< 1. Get Environment State <

' . > 2 Perform Action >

3. Get Reward or Penalty

AGENT

ENVIRONMENT

4, Update Action Policies (Learning)

Figure 1-21. Reinforcement learning: training a robot to play chess

The main steps involved for making the robot learn to play chess is pictorially depicted in Figure 1-21.
This is based on the steps discussed earlier for any reinforcement learning method. In fact, Google’s
DeepMind built the AlphaGo AI with components of reinforcement learning to train the system to play the
game of Go.

Batch Learning

Batch learning methods are also popularly known as offline learning methods. These are Machine Learning
methods that are used in end-to-end Machine Learning systems where the model is trained using all the
available training data in one go. Once training is done and the model completes the process of learning,
on getting a satisfactory performance, it is deployed into production where it predicts outputs for new data
samples. However, the model doesn’t keep learning over a period of time continuously with the new data.
Once the training is complete the model stops learning. Thus, since the model trains with data in one single
batch and it is usually a one-time procedure, this is known as batch or offline learning.

43

CHAPTER 1 © MACHINE LEARNING BASICS

We can always train the model on new data but then we would have to add new data samples along
with the older historical training data and again re-build the model using this new batch of data. If most of
the model building workflow has already been implemented, retraining a model would not involve a lot of
effort; however, with the data size getting bigger with each new data sample, the retraining process will start
consuming more processor, memory, and disk resources over a period of time. These are some points to be
considered when you are building models that would be running from systems having limited capacity.

Online Learning

Online learning methods work in a different way as compared to batch learning methods. The training

data is usually fed in multiple incremental batches to the algorithm. These data batches are also known as
mini-batches in ML terminology. However, the training process does not end there unlike batch learning
methods. It keeps on learning over a period of time based on new data samples which are sent to it for
prediction. Basically it predicts and learns in the process with new data on the fly without have to re-run the
whole model on previous data samples.

There are several advantages to online learning—it is suitable in real-world scenarios where the model
might need to keep learning and re-training on new data samples as they arrive. Problems like device failure
or anomaly prediction and stock market forecasting are two relevant scenarios. Besides this, since the data
is fed to the model in incremental mini-batches, you can build these models on commodity hardware
without worrying about memory or disk constraints since unlike batch learning methods, you do not need
to load the full dataset in memory before training the model. Besides this, once the model trains on datasets,
you can remove them since we do not need the same data again as the model learns incrementally and
remembers what it has learned in the past.

One of the major caveats in online learning methods is the fact that bad data samples can affect the
model performance adversely. All ML methods work on the principle of “Garbage In Garbage Out” Hence
if you supply bad data samples to a well-trained model, it can start learning relationships and patterns that
have no real significance and this ends up affecting the overall model performance. Since online learning
methods keep learning based on new data samples, you should ensure proper checks are in place to
notify you in case suddenly the model performance drops. Also suitable model parameters like learning
rate should be selected with care to ensure the model doesn’t overfit or get biased based on specific data
samples.

Instance Based Learning

There are various ways to build Machine Learning models using methods that try to generalize based

on input data. Instance based learning involves ML systems and methods that use the raw data points
themselves to figure out outcomes for newer, previously unseen data samples instead of building an explicit
model on training data and then testing it out.

A simple example would be a K-nearest neighbor algorithm. Assuming k = 3, we have our initial training
data. The ML method knows the representation of the data from the features, including its dimensions,
position of each data point, and so on. For any new data point, it will use a similarity measure (like cosine or
Euclidean distance) and find the three nearest input data points to this new data point. Once that is decided,
we simply take a majority of the outcomes for those three training points and predict or assign it as the
outcome label/response for this new data point. Thus, instance based learning works by looking at the input
data points and using a similarity metric to generalize and predict for new data points.

44

CHAPTER 1 © MACHINE LEARNING BASICS

Model Based Learning

The model based learning methods are a more traditional ML approach toward generalizing based on
training data. Typically an iterative process takes place where the input data is used to extract features and
models are built based on various model parameters (known as hyperparameters). These hyperparameters
are optimized based on various model validation techniques to select the model that generalizes best on the
training data and some amount of validation and test data (split from the initial dataset). Finally, the best
model is used to make predictions or decisions as and when needed.

The CRISP-DM Process Model

The CRISP-DM model stands for CRoss Industry Standard Process for Data Mining. More popularly known
by the acronym itself, CRISP-DM is a tried, tested, and robust industry standard process model followed for
data mining and analytics projects. CRISP-DM clearly depicts necessary steps, processes, and workflows for
executing any project right from formalizing business requirements to testing and deploying a solution to
transform data into insights. Data Science, Data Mining, and Machine Learning are all about trying to run
multiple iterative processes to extract insights and information from data. Hence we can say that analyzing
data is truly both an art as well as a science, because it is not always about running algorithms without
reason; a lot of the major effort involves in understanding the business, the actual value of the efforts being
invested, and proper methods to articulate end results and insights.

The CRISP-DM model tells us that for building an end-to-end solution for any analytics project or
system, there are a total of six major steps or phases, some of them being iterative. Just like we have a
software development lifecycle with several major phases or steps for a software development project, we
have a data mining or analysis lifecycle in this scenario. Figure 1-22 depicts the data mining lifecycle with the
CRISP-DM model.

45

CHAPTER 1 © MACHINE LEARNING BASICS

Business S ELE]
Understanding B Understanding

) P

Data
Preparation

] U

Figure 1-22. The CRISP-DM model depicting the data mining lifecycle

Figure 1-22 clearly shows there are a total of six major phases in the data mining lifecycle and the
direction to proceed is depicted with arrows. This model is not a rigid imposition but rather a framework to
ensure you are on the right track when going through the lifecycle of any analytics project. In some scenarios
like anomaly detection or trend analysis, you might be more interested in data understanding, exploration,
and visualization rather than intensive modeling. Each of the six phases is described in detail as follows.

Business Understanding

This is the initial phase before kick starting any project in full flow. However this is one of the most important
phases in the lifecycle! The main objective here starts with understanding the business context and
requirements for the problem to be solved at hand. Definition of business requirements is crucial to convert
the business problem into a data mining or analytics problem and to set expectations and success criteria
for both the customer as well as the solution task force. The final deliverable from this phase would be a
detailed plan with the major milestones of the project and expected timelines along with success criteria,
assumptions, constraints, caveats, and challenges.

46

CHAPTER 1 © MACHINE LEARNING BASICS

Define Business Problem

The first task in this phase would be to start by understanding the business objective of the problem to
be solved and build a formal definition of the problem. The following points are crucial toward clearly
articulating and defining the business problem.

Get business context of the problem to be solved, assess the problem with the help of
domain, and subject matter experts (SMEs).

Describe main pain points or target areas for business objective to be solved.

Understand the solutions that are currently in place, what is lacking, and what needs
to be improved.

Define the business objective along with proper deliverables and success criteria
based on inputs from business, data scientists, analysts, and SMEs.

Assess and Analyze Scenarios

Once the business problem is defined clearly, the main tasks involved would be to analyze and assess the
current scenario with regard to the business problem definition. This includes looking at what is currently
available and making a note of various items required ranging from resources, personnel, to data. Besides
this, proper assessment of risks and contingency plans need to be discussed. The main steps involved in the
assessment stage here are mentioned as follows.

Assess and analyze what is currently available to solve the problem from various
perspectives including data, personnel, resource time, and risks.

Build out a brief report of key resources needed (both hardware and software) and
personnel involved. In case of any shortcomings, make sure to call them out as
necessary.

Discuss business objective requirements one by one and then identify and record
possible assumptions and constraints for each requirement with the help of SMEs.

Verify assumptions and constraints based on data available (a lot of this might be
answered only after detailed analysis, hence it depends on the problem to be solved
and the data available).

Document and report possible risks involved in the project including timelines,
resources, personnel, data, and financial based concerns. Build contingency plans
for each possible scenario.

Discuss success criteria and try to document a comparative return on investment or
cost versus valuation analysis if needed. This just needs to be a rough benchmark to
make sure the project aligns with the company or business vision.

47

CHAPTER 1 © MACHINE LEARNING BASICS

Define Data Mining Problem

This could be defined as the pre-analysis phase, which starts once the success criteria and the business
problem is defined and all the risks, assumptions and constraints have been documented. This phase involves
having detailed technical discussions with your analysts, data scientists, and developers and keeping the
business stakeholders in sync. The following are the key tasks that are to be undertaken in this phase.

e Discuss and document possible Machine Learning and data mining methods
suitable for the solution by assessing possible tools, algorithms, and techniques.

e Develop high-level designs for end-to-end solution architecture.

e Record notes on what the end output from the solution will be and how will it
integrate with existing business components.

e Record success evaluation criteria from a Data Science standpoint. A simple example
could be making sure that predictions are at least 80% accurate.

Project Plan

This is the final stage under the business understanding phase. A project plan is generally created consisting

of the entire major six phases in the CRISP-DM model, estimated timelines, allocated resources and

personnel, and possible risks and contingency plans. Care is taken to ensure concrete high-level deliverables

and success criteria are defined for each phase and iterative phases like modeling are highlighted with

annotations like feedback based on SMEs might need models to be rebuilt and retuned before deployment.
You should be ready for the next step once you have the following points covered.

e Definition of business objectives for the problem
e Success criteria for business and data mining efforts
e Budget allocation and resource planning

e C(lear, well-defined Machine Learning and data mining methodologies to be
followed, including high-level workflows from exploration to deployment

e Detailed project plan with all six phases of the CRISP-DM model defined with
estimated timelines and risks

Data Understanding

The second phase in the CRISP-DM process involves taking a deep dive into the data available and
understanding it in further detail before starting the process of analysis. This involves collecting the data,
describing the various attributes, performing some exploratory analysis of the data, and keeping tabs on data
quality. This phase should not be neglected because bad data or insufficient knowledge about available data
can have cascading adverse effects in the later stages in this process.

Data Collection

This task is undertaken to extract, curate, and collect all the necessary data needed for your business
objective. Usually this involves making use of the organizations historical data warehouses, data marts, data
lakes and so on. An assessment is done based on the existing data available in the organization and if there is
any need for additional data. This can be obtained from the web, i.e., open data sources or it can be obtained
from other channels like surveys, purchases, experiments and simulations. Detailed documents should keep

48

CHAPTER 1 © MACHINE LEARNING BASICS

track of all datasets which would be used for analysis and additional data sources if any are necessary. This
document can be combined with the subsequent stages of this phase.

Data Description

Data description involves carrying out initial analysis on the data to understand more about the data, its
source, volume, attributes, and relationships. Once these details are documented, any shortcomings if
noted should be informed to relevant personnel. The following factors are crucial to building a proper data
description document.

e Datasources (SQL, NoSQL, Big Data), record of origin (ROO), record of
reference(ROR)

e Data volume (size, number of records, total databases, tables)

e Data attributes and their description (variables, data types)

e Relationship and mapping schemes (understand attribute representations)
e Basic descriptive statistics (mean, median, variance)

e Focus on which attributes are important for the business

Exploratory Data Analysis

Exploratory data analysis, also known as EDA, is one of the first major analysis stages in the lifecycle. Here,
the main objective is to explore and understand the data in detail. You can make use of descriptive statistics,
plots, charts, and visualizations to look at the various data attributes, find associations and correlations and
make a note of data quality problems if any. Following are some of the major tasks in this stage.

e Explore, describe, and visualize data attributes
e Select data and attributes subsets that seem most important for the problem
e Extensive analysis to find correlations and associations and test hypotheses

e Note missing data points if any

Data Quality Analysis

Data quality analysis is the final stage in the data understanding phase where we analyze the quality of data
in our datasets and document potential errors, shortcomings, and issues that need to be resolved before
analyzing the data further or starting modeling efforts. The main focus on data quality analysis involves the
following.

e Missing values
e Inconsistent values
¢ Wrong information due to data errors (manual/automated)

e Wrong metadata information

49

CHAPTER 1 © MACHINE LEARNING BASICS

Data Preparation

The third phase in the CRISP-DM process takes place after gaining enough knowledge on the business
problem and relevant dataset. Data preparation is mainly a set of tasks that are performed to clean, wrangle,
curate, and prepare the data before running any analytical or Machine Learning methods and building
models. We will briefly discuss some of the major tasks under the data preparation phase in this section. An
important point to remember here is that data preparation usually is the most time consuming phase in the
data mining lifecycle and often takes 60% to 70% time in the overall project. However this phase should be
taken very seriously because, like we have discussed multiple times before, bad data will lead to bad models
and poor performance and results.

Data Integration

The process of data integration is mainly done when we have multiple datasets that we might want to
integrate or merge. This can be done in two ways. Appending several datasets by combining them, which
is typically done for datasets having the same attributes. Merging several datasets together having different
attributes or columns, by using common fields like keys.

Data Wrangling

The process of data wrangling or data munging involves data processing, cleaning, normalization, and
formatting. Data in its raw form is rarely consumable by Machine Learning methods to build models. Hence
we need to process the data based on its form, clean underlying errors and inconsistencies, and format it
into more consumable formats for ML algorithms. Following are the main tasks relevant to data wrangling.

e Handling missing values (remove rows, impute missing values)

e Handling data inconsistencies (delete rows, attributes, fix inconsistencies)
e Fixing incorrect metadata and annotations

e Handling ambiguous attribute values

e Curating and formatting data into necessary formats (CSV, Json, relational)

Attribute Generation and Selection

Data is comprised of observations or samples (rows) and attributes or features (columns). The process of
attribute generation is also known as feature extraction and engineering in Machine Learning terminology.
Attribute generation is basically creating new attributes or variables from existing attributes based on some
rules, logic, or hypothesis. A simple example would be creating a new numeric variable called age based on
two date-time fields—current_date and birth_date—for a dataset of employees in an organization. There
are several techniques with regard to attribute generation that we discuss in future chapters.

Attribute selection is basically selecting a subset of features or attributes from the dataset based on
parameters like attribute importance, quality, relevancy, assumptions, and constraints. Sometimes even
Machine Learning methods are used to select relevant attributes based on the data. This is popularly known
as feature selection in Machine Learning terminology.

50

CHAPTER 1 © MACHINE LEARNING BASICS

Modeling

The fourth phase in the CRISP-DM process is the core phase in the process where most of the analysis

takes place with regard to using clean, formatted data and its attributes to build models to solve business
problems. This is an iterative process, as depicted in Figure 1-22 earlier, along with model evaluation and all
the preceding steps leading up to modeling. The basic idea is to build multiple models iteratively trying to
get to the best model that satisfies our success criteria, data mining objectives, and business objectives. We
briefly talk about some of the major stages relevant to modeling in this section.

Selecting Modeling Techniques

In this stage, we pick up a list of relevant Machine Learning and data mining tools, frameworks, techniques,
and algorithms listed in the “Business Understanding” phase. Techniques that are proven to be robust

and useful in solving the problem are usually selected based on inputs and insights from data analysts and
data scientists. These are mainly decided by the current data available, business goals, data mining goals,
algorithm requirements, and constraints.

Model Building

The process of model building is also known as training the model using data and features from our dataset.
A combination of data (features) and Machine Learning algorithms together give us a model that tries

to generalize on the training data and give necessary results in the form of insights and/or predictions.
Generally various algorithms are used to try out multiple modeling approaches on the same data to solve
the same problem to get the best model that performs and gives outputs that are the closest to the business
success criteria. Key things to keep track here are the models created, model parameters being used, and
their results.

Model Evaluation and Tuning

In this stage, we evaluate each model based on several metrics like model accuracy, precision, recall,

F1 score, and so on. We also tune the model parameters based on techniques like grid search and cross
validation to get to the model that gives us the best results. Tuned models are also matched with the data
mining goals to see if we are able to get the desired results as well as performance. Model tuning is also
termed as hyperparameter optimization in the Machine Learning world.

Model Assessment

Once we have models that are providing desirable and relevant results, a detailed assessment of the model is
performed based on the following parameters.

e Model performance is in line with defined success criteria
e Reproducible and consistent results from models

e Scalability, robustness, and ease of deployment

e Future extensibility of the model

e Model evaluation gives satisfactory results

51

CHAPTER 1 © MACHINE LEARNING BASICS

Evaluation

The fifth phase in the CRISP-DM process takes place once we have the final models from the modeling
phase that satisfy necessary success criteria with respect to our data mining goals and have the desired
performance and results with regard to model evaluation metrics like accuracy. The evaluation phase
involves carrying out a detailed assessment and review of the final models and the results which are
obtained from them. Some of the main points that are evaluated in this section are as follows.

e Ranking final models based on the quality of results and their relevancy based on
alignment with business objectives

e Anyassumptions or constraints that were invalidated by the models

e Cost of deployment of the entire Machine Learning pipeline from data extraction
and processing to modeling and predictions

e Any pain points in the whole process? What should be recommended? What should
be avoided?

e Data sufficiency report based on results
e Final suggestions, feedback, and recommendations from solutions team and SMEs

Based on the report formed from these points, after a discussion, the team can decide whether they
want to proceed to the next phase of model deployment or a full reiteration is needed, starting from business
and data understanding to modeling.

Deployment

The final phase in the CRISP-DM process is all about deploying your selected models to production and
making sure the transition from development to production is seamless. Usually most organizations follow
a standard path-to-production methodology. A proper plan for deployment is built based on resources
required, servers, hardware, software, and so on. Models are validated, saved, and deployed on necessary
systems and servers. A plan is also put in place for regular monitoring and maintenance of models to
continuously evaluate their performance, check for results and their validity, and retire, replace, and update
models as and when needed.

Building Machine Intelligence

The objective of Machine Learning, data mining, or artificial intelligence is to make our lives easier,
automate tasks, and take better decisions. Building machine intelligence involves everything we have
learned until now starting from Machine Learning concepts to actually implementing and building models
and using them in the real world. Machine intelligence can be built using non-traditional computing
approaches like Machine Learning. In this section, we establish full-fledged end-to-end Machine Learning
pipelines based on the CRISP-DM model, which will help us solve real-world problems by building machine
intelligence using a structured process.

Machine Learning Pipelines

The best way to solve a real-world Machine Learning or analytics problem is to use a Machine Learning
pipeline starting from getting your data to transforming it into information and insights using Machine

52

CHAPTER 1 © MACHINE LEARNING BASICS

Learning algorithms and techniques. This is more of a technical or solution based pipeline and it assumes
that several aspects of the CRISP-DM model are already covered, including the following points.

e Business and data understanding
e ML/DM technique selection
° Risk, assumptions, and constraints assessment

A Machine Learning pipeline will mainly consist of elements related to data retrieval and extraction,
preparation, modeling, evaluation, and deployment. Figure 1-23 shows a high-level overview of a standard
Machine Learning pipeline with the major phases highlighted in their blocks.

Datasets Data Retrieval
Data Feature Feature
P ing & Extraction & Scaling &) Model
Wrangling Engineering Selection —» Modeling Evaluation & Repicyet &
: Monitoring
Tuning
Data Preparation

t— Re-iterate till satisfactory model perf

Figure 1-23. A standard Machine Learning pipeline

From Figure 1-23, it is evident that there are several major phases in the Machine Learning pipeline and
they are quite similar to the CRISP-DM process model, which is why we talked about it in detail earlier. The
major steps in the pipeline are briefly mentioned here.

e Dataretrieval: This is mainly data collection, extraction, and acquisition from
various data sources and data stores. We cover data retrieval mechanisms in detail in
Chapter 3, “Processing, Wrangling, and Visualizing Data”.

e Data preparation: In this step, we pre-process the data, clean it, wrangle it, and
manipulate it as needed. Initial exploratory data analysis is also carried out.
Next steps involved extracting, engineering, and selecting features/attributes from
the data.

e Data processing and wrangling: Mainly concerned with data processing,
cleaning, munging, wrangling and performing initial descriptive and
exploratory data analysis. We cover this in further details with hands-on
examples in Chapter 3, “Processing, Wrangling, and Visualizing Data”.

e Feature extraction and engineering: Here, we extract important features or
attributes from the raw data and even create or engineer new features from
existing features. Details on various feature engineering techniques are covered
in Chapter 4, “Feature Engineering and Selection”.

53

http://dx.doi.org/10.1007/978-1-4842-3207-1_3
http://dx.doi.org/10.1007/978-1-4842-3207-1_3
http://dx.doi.org/10.1007/978-1-4842-3207-1_4

CHAPTER 1 © MACHINE LEARNING BASICS

e Feature scaling and selection: Data features often need to be normalized and
scaled to prevent Machine Learning algorithms from getting biased. Besides
this, often we need to select a subset of all available features based on feature
importance and quality. This process is known as feature selection. Chapter 4,
“Feature Engineering and Selection,” covers these aspects.

e Modeling: In the process of modeling, we usually feed the data features to a Machine
Learning method or algorithm and train the model, typically to optimize a specific
cost function in most cases with the objective of reducing errors and generalizing the
representations learned from the data. Chapter 5, “Building, Tuning, and Deploying
Models,” covers the art and science behind building Machine Learning models.

e Model evaluation and tuning: Built models are evaluated and tested on validation
datasets and, based on metrics like accuracy, F1 score, and others, the model
performance is evaluated. Models have various parameters that are tuned in a
process called hyperparameter optimization to get models with the best and optimal
results. Chapter 5, “Building, Tuning, and Deploying Models,” covers these aspects.

e Deployment and monitoring: Selected models are deployed in production and
are constantly monitored based on their predictions and results. Details on model
deployment are covered in Chapter 5, “Building, Tuning and Deploying Models”

Supervised Machine Learning Pipeline

By now we know that supervised Machine Learning methods are all about working with supervised
labeled data to train models and then predict outcomes for new data samples. Some processes like feature
engineering, scaling, and selection should always remain constant so that the same features are used for
training the model and the same features are extracted from new data samples to feed the model in the
prediction phase. Based on our earlier generic Machine Learning pipeline, Figure 1-24 shows a standard
supervised Machine Learning pipeline.

|h 1 " Machine
Training H> > 'Pll Training ‘ Leaming
Data Features Algorithm

TRAINING ealure
DataProcessing | ﬁ.,;nm& Feature
PREDICTION RAvangeey Scaling Selaction Stpsvindu

Predicted
|I & New Outcome
> Features Labels

Figure 1-24. Supervised Machine Learning pipeline

You can clearly see the two phases of model training and prediction highlighted in Figure 1-24.
Also, based on what we had mentioned earlier, the same sequence of data processing, wrangling, feature
engineering, scaling, and selection is used for both data used in training the model and future data samples
for which the model predicts outcomes. This is a very important point that you must remember whenever
you are building any supervised model. Besides this, as depicted, the model is a combination of a Machine

54

http://dx.doi.org/10.1007/978-1-4842-3207-1_4
http://dx.doi.org/10.1007/978-1-4842-3207-1_5
http://dx.doi.org/10.1007/978-1-4842-3207-1_5
http://dx.doi.org/10.1007/978-1-4842-3207-1_5

CHAPTER 1 © MACHINE LEARNING BASICS

Learning (supervised) algorithm and training data features and corresponding labels. This model will take
features from new data samples and output predicted labels in the prediction phase.

Unsupervised Machine Learning Pipeline

Unsupervised Machine Learning is all about extracting patterns, relationships, associations, and clusters
from data. The processes related to feature engineering, scaling and selection are similar to supervised
learning. However there is no concept of pre-labeled data here. Hence the unsupervised Machine Learning
pipeline would be slightly different in contrast to the supervised pipeline. Figure 1-25 depicts a standard
unsupervised Machine Learning pipeline.

= =
ia > > Training m::
Features Agorithm

TRAINING Feature
Data P i " Engineering &
Selection Unsupervised

VR Sealing ey —:
Clusters,
Patterns,
- - New Association
Features Rules

Figure 1-25. Unsupervised Machine Learning pipeline

PREDICTION

A 4

Figure 1-25 clearly depicts that no supervised labeled data is used for training the model. With the
absence of labels, we just have training data that goes through the same data preparation phase as in the
supervised learning pipeline and we build our unsupervised model with an unsupervised Machine Learning
algorithm and training features. In the prediction phase, we extract features from new data samples and pass
them through the model which gives relevant results according to the type of Machine Learning task we are
trying to perform, which can be clustering, pattern detection, association rules, or dimensionality reduction.

Real-World Case Study: Predicting Student Grant
Recommendations

Let’s take a step back from what we have learned so far! The main objective here was to gain a solid grasp
over the entire Machine Learning landscape, understand crucial concepts, build on the basic foundations,
and understand how to execute Machine Learning projects with the help of Machine Learning pipelines
with the CRISP-DM process model being the source of all inspiration. Let’s put all this together to take a
very basic real-world case study by building a supervised Machine Learning pipeline on a toy dataset. Our
major objective is as follows. Given that you have several students with multiple attributes like grades,
performance, and scores, can you build a model based on past historical data to predict the chance of the
student getting a recommendation grant for a research project?

This will be a quick walkthrough with the main intent of depicting how to build and deploy a real-world
Machine Learning pipeline and perform predictions. This will also give you a good hands-on experience to
get started with Machine Learning. Do not worry too much if you don’t understand the details of each and
every line of code; the subsequent chapters cover all the tools, techniques, and frameworks used here in

55

CHAPTER 1 © MACHINE LEARNING BASICS

detail. We will be using Python 3.5 in this book; you can refer to Chapter 2, “The Python Machine Learning
Ecosystem” to understand more about Python and the various tools and frameworks used in Machine
Learning. You can follow along with the code snippets in this section or open the Predicting Student
Recommendation Machine Learning Pipeline.ipynb jupyter notebook by running jupyter notebook

in the command line/terminal in the same directory as this notebook. You can then run the relevant code
snippets in the notebook from your browser. Chapter 2 covers jupyter notebooks in detail.

Objective

You have historical student performance data and their grant recommendation outcomes in the form of
a comma separated value file named student_records.csv. Each data sample consists of the following
attributes.

e Name (the student name)

e OverallGrade (overall grade obtained)

e (Obedient (whether they were diligent during their course of stay)
e ResearchScore (marks obtained in their research work)

e ProjectScore (marks obtained in the project)

e Recommend (whether they got the grant recommendation)

You main objective is to build a predictive model based on this data such that you can predict for any
future student whether they will be recommended for the grant based on their performance attributes.

Data Retrieval

Here, we will leverage the pandas framework to retrieve the data from the CSV file. The following snippet
shows us how to retrieve the data and view it.

In [1]: import pandas as pd
..t # turn of warning messages

: pd.options.mode.chained assignment = None # default='warn'

1 # get data

..t df = pd.read csv('student_records.csv')
condf

56

http://dx.doi.org/10.1007/978-1-4842-3207-1_2
http://dx.doi.org/10.1007/978-1-4842-3207-1_2

CHAPTER 1 © MACHINE LEARNING BASICS

Out[1]:
o Name | OverallGrade | Obedient | ResearchScore | ProjectScore | Recommend
O|Henry |A Y 90 85 Yes
1|John |C N 85 51 Yes
2|David |F N 10 17 No
3|Holmes | B Y 75 7 No
4|Marvin |E N 20 30 No
5|Simon |A Y 92 79 Yes
6| Robert |B Y 60 59 No
7|Trent |C Y 75 33 No

Figure 1-26. Raw data depicting student records and their recommendations

Now that we can see data samples showing records for each student and their corresponding
recommendation outcomes in Figure 1-26, we will perform necessary tasks relevant to data preparation.

Data Preparation

Based on the dataset we saw earlier, we do not have any data errors or missing values, hence we will mainly

focus on feature engineering and scaling in this section.

Feature Extraction and Engineering

Let’s start by extracting the existing features from the dataset and the outcomes in separate variables. The

following snippet shows this process. See Figures 1-27 and 1-28.

In [2]: # get features and corresponding outcomes
...: feature names = ['OverallGrade', 'Obedient', 'ResearchScore’,
"ProjectScore’]
..t training features = df[feature names]

: outcome_name = ['Recommend']
: outcome_labels = df[outcome_name]

In [3]: # view features
..: training_features

57

CHAPTER 1 © MACHINE LEARNING BASICS

OQut[3]:
OverallGrade | Obedlent | ResearchScore | ProjectScore
0|A Y 90 85
1(C N 85 51
2(F N 10 17
3B Y 75 4
4|E N 20 30
5/A Y 92 79
6|B Y 60 59
7(C Y 75 33
Figure 1-27. Dataset features
In [4]: # view outcome labels
: outcome_labels
Out[4]:
Recommend
0|Yes
1|Yes
2| No
3| No
4| No
5|Yes
6| No
7| No

Figure 1-28. Dataset recommendation outcome labels for each student

58

CHAPTER 1 © MACHINE LEARNING BASICS

Now that we have extracted our initial available features from the data and their corresponding outcome
labels, let’s separate out our available features based on their type (numerical and categorical). Types of
feature variables are covered in more detail in Chapter 3, “Processing, Wrangling, and Visualizing Data”.

In [5]: # list down features based on type
..: numeric_feature names = ['ResearchScore', 'ProjectScore’]
..: categoricial_feature_names = ['OverallGrade', 'Obedient']

We will now use a standard scalar from scikit-1learn to scale or normalize our two numeric score-
based attributes using the following code.

In [6]: from sklearn.preprocessing import StandardScaler
..t ss = StandardScaler()

: # fit scaler on numeric features
1 ss.fit(training features[numeric_feature names])

..: # scale numeric features now
..t training features[numeric_feature names] =
ss.transform(training features[numeric_feature names])

.t # view updated featureset
..: training_features

S OverallGrade | Obedlent | ResearchScore | ProjectScore
0|A Y 0.899583 1.376650
1(C N 0.730648 -0.091777
2|F N -1.803390 -1.560203
3B Y 0.392776 0.772004
4| E N -1.465519 -0.998746
S5|A Y 0.967158 1.117516
6|B Y -0.114032 0.253735
7(C Y 0.392776 -0.869179

Figure 1-29. Feature set with scaled numeric attributes

59

http://dx.doi.org/10.1007/978-1-4842-3207-1_3

CHAPTER 1 © MACHINE LEARNING BASICS

Now that we have successfully scaled our numeric features (see Figure 1-29), let’s handle our categorical
features and carry out the necessary feature engineering needed based on the following code.

In [7]: training_features = pd.get dummies(training features,
columns=categoricial feature names)
...t # view newly engineering features

...: training_features
Qut
Proj o _A ade_B C ade_E |0 ade_F N Y
1| 0.899583 1.376650 1 0 0 a o o 1
|| 0.730648 -0.001777 0 0 1 0 0 1 0
1| -1.803390 -1.560203 0 0 1] 0 1 1 o
¥ 0.302776 0.772004 0 1 0 0 0 o 1
| -1.465519 -0.998746 o o 0 1 o 1 o
3| 0.067158 1.117516 1 0 0 o o o 1
#[-0.114032 0.253735 0 1 0 o o o 1
"1 0.392776 -0.868179 o 0 1 0 0 0 1

Figure 1-30. Feature set with engineered categorical variables

In [8]: # get list of new categorical features
.: categorical _engineered_features = list(set(training features.columns) -
set(numeric_feature names))

Figure 1-30 shows us the updated feature set with the newly engineered categorical variables. This
process is also known as one hot encoding.

Modeling

We will now build a simple classification (supervised) model based on our feature set by using the logistic
regression algorithm. The following code depicts how to build the supervised model.

In [9]: from sklearn.linear model import LogisticRegression
.t import numpy as np

.: # fit the model
: 1r = LogisticRegression()
: model = lr.fit(training features,
np.array(outcome_labels['Recommend']))
.t # view model parameters
...: model
Out[9]: LogisticRegression(C=1.0, class_weight=None, dual=False,
fit_intercept=True, intercept scaling=1, max_iter=100,
multi class='ovr', n_jobs=1, penalty='12",
random_state=None, solver='liblinear', tol=0.0001,
verbose=0, warm start=False)

Thus, we now have our supervised learning model based on the logistic regression model with
L2 regularization, as you can see from the parameters in the previous output.

60

CHAPTER 1 © MACHINE LEARNING BASICS

Model Evaluation

Typically model evaluation is done based on some holdout or validation dataset that is different from the
training dataset to prevent overfitting or biasing the model. Since this is an example on a toy dataset, let’s
evaluate the performance of our model on the training data using the following snippet.

In [10]: # simple evaluation on training data
...t pred labels = model.predict(training features)
...t actual labels = np.array(outcome labels['Recommend'])

: # evaluate model performance
: from sklearn.metrics import accuracy score
: from sklearn.metrics import classification_report

...t print('Accuracy:', float(accuracy score(actual labels,
pred labels))*100, '%")
: print('Classification Stats:")
: print(classification_report(actual labels, pred labels))

Accuracy: 100.0 %
Classification Stats:
precision recall fi-score support

No 1.00 1.00 1.00 5
Yes 1.00 1.00 1.00 3
avg / total 1.00 1.00 1.00 8

Thus you can see the various metrics that we had mentioned earlier, like accuracy, precision, recall, and
F1 score depicting the model performance. We talk about these metrics in detail in Chapter 5, “Building,
Tuning, and Deploying Models”.

Model Deployment

We built our first supervised learning model, and to deploy this model typically in a system or server, we
need to persist the model. We also need to save the scalar object we used to scale the numerical features
since we use it to transform the numeric features of new data samples. The following snippet depicts a way
to store the model and scalar objects.

In [11]: from sklearn.externals import joblib
...: import os
...: # save models to be deployed on your server
..t if not os.path.exists('Model"):
: os.mkdir('Model")
...t if not os.path.exists('Scaler'):
os.mkdir('Scaler")

.: joblib.dump(model, r'Model/model.pickle")
: joblib.dump(ss, r'Scaler/scaler.pickle")

These files can be easily deployed on a server with necessary code to reload the model and predict new
data samples, which we will see in the upcoming sections.

61

http://dx.doi.org/10.1007/978-1-4842-3207-1_5

CHAPTER 1 © MACHINE LEARNING BASICS

Prediction in Action

We are now ready to start predicting with our newly built and deployed model! To start predictions, we need
to load our model and scalar objects into memory. The following code helps us do this.

In [12]: # load model and scaler objects
: model = joblib.load(r'Model/model.pickle")
...t scaler = joblib.load(r'Scaler/scaler.pickle")

We have some sample new student records (for two students) for which we want our model to predict if
they will get the grant recommendation. Let’s retrieve and view this data using the following code.

In [13]: ## data retrieval
...t new_data = pd.DataFrame([{'Name': 'Nathan', 'OverallGrade': 'F',
'Obedient': 'N', 'ResearchScore': 30, 'ProjectScore': 20},
{'Name': 'Thomas', 'OverallGrade': 'A’,
'Obedient': 'Y', 'ResearchScore': 78, 'ProjectScore': 80}])
: new_data = new_data[['Name', 'OverallGrade', 'Obedient’,
'ResearchScore', 'ProjectScore']]

...: new_data
Out[13
Name | OverallGrade | Obedient | ResearchScore | ProjectScore
0| Nathan |F N 30 20
1| Thomas|A Y 78 80

Figure 1-31. New student records

We will now carry out the tasks relevant to data preparation—feature extraction, engineering, and
scaling—in the following code snippet.

In [14]: ## data preparation
...: prediction features = new_data[feature names]

: # scaling
: prediction features[numeric_feature names] =
scaler.transform(prediction features[numeric_feature names])

...: # engineering categorical variables
...t prediction features = pd.get dummies(prediction features,

columns=categoricial feature names)

: # view feature set
..: prediction_features

62

CHAPTER 1 © MACHINE LEARNING BASICS

Out[14]:

ResearchScore | ProjectScore | OverallGrade _A | OverallGrade_F| Obedlent_N|Obedlent Y

=

-1.127647 -1.430636 o 1 1 0
0.494137 1.160705 1 o 0 1

-

Figure 1-32. Updated feature set for new students

We now have the relevant features for the new students! However you can see that some of the
categorical features are missing based on some grades like B, C, and E. This is because none of these
students obtained those grades but we still need those attributes because the model was trained on all
attributes including these. The following snippet helps us identify and add the missing categorical features.
We add the value for each of those features as 0 for each student since they did not obtain those grades.

In [15]: # add missing categorical feature columns
..t current_categorical engineered features =
set(prediction features.columns) - set(numeric feature names)
: missing features = set(categorical engineered features) -
current_categorical engineered features
: for feature in missing features:
add zeros since feature is absent in these data samples
prediction features[feature] = [0] * len(prediction features)

: # view final feature set
: prediction_features

Researchicore ProjectScore A| Over F N Y c woe B Over E
4 4
V-1 127647 -1 430606 L 1 1 o o o o
0404137 1160705 1 0 0 1 [(] 0

Figure 1-33. Final feature set for new students

We have our complete feature set ready for both the new students. Let’s put our model to the test and
get the predictions with regard to grant recommendations!

In [16]: ## predict using model
...t predictions = model.predict(prediction features)

..: ## display results

..: new_data['Recommend'] = predictions
: new_data

63

CHAPTER 1

OQut[16]:

MACHINE LEARNING BASICS

Name | OverallGrade | Obedlent| ResearchScore | ProjectScore | Recommend
0| Nathan |F N 30 20 No
1| Thomas|A Y 78 80 Yes

Figure 1-34. New student records with model predictions for grant recommendations

We can clearly see from Figure 1-34 that our model has predicted grant recommendation labels for both
the new students. Thomas clearly being diligent, having a straight A average and decent scores, is most likely
to get the grant recommendation as compared to Nathan. Thus you can see that our model has learned how
to predict grant recommendation outcomes based on past historical student data. This should whet your
appetite on getting started with Machine Learning. We are about to deep dive into more complex real-world
problems in the upcoming chapters!

Challenges in Machine Learning

Machine Learning is a rapidly evolving, fast-paced, and exciting field with a lot of prospect, opportunity,
and scope. However it comes with its own set of challenges, due to the complex nature of Machine Learning
methods, its dependency on data, and not being one of the more traditional computing paradigms. The
following points cover some of the main challenges in Machine Learning.

e Data quality issues lead to problems, especially with regard to data processing and
feature extraction.

e Data acquisition, extraction, and retrieval is an extremely tedious and time
consuming process.

e Lack of good quality and sufficient training data in many scenarios.
¢ Formulating business problems clearly with well-defined goals and objectives.

e Feature extraction and engineering, especially hand-crafting features, is one of the
most difficult yet important tasks in Machine Learning. Deep Learning seems to have
gained some advantage in this area recently.

e Opverfitting or underfitting models can lead to the model learning poor
representations and relationships from the training data leading to detrimental
performance.

e The curse of dimensionality: too many features can be a real hindrance.
e Complex models can be difficult to deploy in the real world.

This is not an exhaustive list of challenges faced in Machine Learning today, but it is definitely a list of
the top problems data scientists or analysts usually face in Machine Learning projects and tasks. We will
cover dealing with these issues in detail when we discuss more about the various stages in the Machine
Learning pipeline as well as solve real-world problems in subsequent chapters.

Real-World Applications of Machine Learning

Machine Learning is widely being applied and used in the real world today to solve complex problems that
would otherwise have been impossible to solve based on traditional approaches and rule-based systems.
The following list depicts some of the real-world applications of Machine Learning.

64

CHAPTER 1 © MACHINE LEARNING BASICS

e Product recommendations in online shopping platforms
e Sentiment and emotion analysis

e Anomaly detection

e Fraud detection and prevention

° Content recommendation (news, music, movies, and so on)
e Weather forecasting

e Stock market forecasting

e Market basket analysis

e Customer segmentation

e Object and scene recognition in images and video

e Speech recognition

e Churn analytics

e Click through predictions

e Failure/defect detection and prevention

e E-mail spam filtering

Summary

The intent of this chapter was to get you familiarized with the foundations of Machine Learning before
taking a deep dive into Machine Learning pipelines and solving real-world problems. The need for Machine
Learning in today’s world is introduced in the chapter with a focus on making data-driven decisions at scale.
We also talked about the various programming paradigms and how Machine Learning has disrupted the
traditional programming paradigm. Next up, we explored the Machine Learning landscape starting from the
formal definition to the various domains and fields associated with Machine Learning. Basic foundational
concepts were covered in areas like mathematics, statistics, computer science, Data Science, data mining,
artificial intelligence, natural language processing, and Deep Learning since all of them tie back to Machine
Learning and we will also be using tools, techniques, methodologies, and processes from these fields in
future chapters. Concepts relevant to the various Machine Learning methods have also been covered
including supervised, unsupervised, semi-supervised, and reinforcement learning. Other classifications

of Machine Learning methods were depicted, like batch versus online based learning methods and

online versus instance based learning methods. A detailed depiction of the CRISP-DM process model was
explained to give an overview of the industry standard process for data mining projects. Analogies were
drawn from this model to build Machine Learning pipelines, where we focus on both supervised and
unsupervised learning pipelines.

We brought everything covered in this chapter together in solving a small real-world problem of
predicting grant recommendations for students and building a sample Machine Learning pipeline from
scratch. This should definitely get you ready for the next chapters, where you will be exploring each of the
stages in a Machine Learning pipeline in further details and cover ground on the Python Machine Learning
ecosystem. Last but not the least, challenges, and real-world applications of Machine Learning will give you
a good idea on the vast scope of Machine Learning and make you aware of the caveats and pitfalls associated
with Machine Learning problems.

65

CHAPTER 2

The Python Machine Learning
Ecosystem

In the first chapter we explored the absolute basics of Machine Learning and looked at some of the
algorithms that we can use. Machine Learning is a very popular and relevant topic in the world of technology
today. Hence we have a very diverse and varied support for Machine Learning in terms of programming
languages and frameworks. There are Machine Learning libraries for almost all popular languages including
C++, R, Julia, Scala, Python, etc. In this chapter we try to justify why Python is an apt language for Machine
Learning. Once we have argued our selection logically, we give you a brief introduction to the Python
Machine Learning (ML) ecosystem. This Python ML ecosystem is a collection of libraries that enable the
developers to extract and transform data, perform data wrangling operations, apply existing robust Machine
Learning algorithms and also develop custom algorithms easily. These libraries include numpy, scipy,
pandas, scikit-learn, statsmodels, tensorflow, keras,and so on. We cover several of these libraries

in a nutshell so that the user will have some familiarity with the basics of each of these libraries. These will
be used extensively in the later chapters of the book. An important thing to keep in mind here is that the
purpose of this chapter is to acquaint you with the diverse set of frameworks and libraries in the Python

ML ecosystem to get an idea of what can be leveraged to solve Machine Learning problems. We enrich the
content with useful links that you can refer to for extensive documentation and tutorials. We assume some
basic proficiency with Python and programming in general. All the code snippets and examples used in this
chapter is available in the GitHub repository for this book at https://github.com/dipanjanS/practical-
machine-learning-with-python under the directory/folder for Chapter 2. You can refer to the Python file
named python_ml_ecosystem.py for all the examples used in this chapter and try the examples as you

read this chapter or you can even refer to the jupyter notebook named The Python Machine Learning
Ecosystem.ipynb for a more interactive experience.

Python: An Introduction

Python was created by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see https://www.cwi.nl/)
in the Netherlands. The first version of Python was released in 1991. Guido wrote Python as a successor of the
language called ABC. In the following years Python has developed into an extensively used high level language
and a general programming language. Python is an interpreted language, which means that the source code of

a Python program is converted into bytecode, which is then executed by the Python virtual machine. Python is

© Dipanjan Sarkar, Raghav Bali and Tushar Sharma 2018 67
D. Sarkar et al., Practical Machine Learning with Python, https://doi.org/10.1007/978-1-4842-3207-1_2

https://doi.org/10.1007/978-1-4842-3207-1_2
https://github.com/dipanjanS/practical-machine-learning-with-python
https://github.com/dipanjanS/practical-machine-learning-with-python
http://dx.doi.org/10.1007/978-1-4842-3207-1_2
https://www.cwi.nl/

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

different from major compiled languages like C and C++ as Python code is not required to be built and linked
like code for these languages. This distinction makes for two important points:

o Python code is fast to develop: As the code is not required to be compiled and
built, Python code can be much readily changed and executed. This makes for a fast
development cycle.

e Python code is not as fast in execution: Since the code is not directly compiled and
executed and an additional layer of the Python virtual machine is responsible for
execution, Python code runs a little slow as compared to conventional languages like
C, C++, etc.

Strengths

Python has steadily risen in the charts of widely used programming languages and according to several
surveys and research; it is the fifth most important language in the world. Recently several surveys depicted
Python to be the most popular language for Machine Learning and Data Science! We will compile a brief list
of advantages that Python offers that probably explains its popularity.

1. Easy to learn: Python is a relatively easy-to-learn language. Its syntax is simple
for a beginner to learn and understand. When compared with languages likes
C or Java, there is minimal boilerplate code required in executing a Python
program.

2. Supports multiple programming paradigms: Python is a multi-paradigm,
multi-purpose programming language. It supports object oriented programming,
structured programming, functional programming, and even aspect
oriented programming. This versatility allows it to be used by a multitude of
programmers.

3. Extensible: Extensibility of Python is one of its most important characteristics.
Python has a huge number of modules easily available which can be readily
installed and used. These modules cover every aspect of programming from data
access to implementation of popular algorithms. This easy-to-extend feature
ensures that a Python developer is more productive as a large array of problems
can be solved by available libraries.

4. Active open source community: Python is open source and supported by a large
developer community. This makes it robust and adaptive. The bugs encountered
are easily fixed by the Python community. Being open source, developers can
tinker with the Python source code if their requirements call for it.

Pitfalls

Although Python is a very popular programming language, it comes with its own share of pitfalls. One of the
most important limitations it suffers is in terms of execution speed. Being an interpreted language, it is slow
when compared to compiled languages. This limitation can be a bit restrictive in scenarios where extremely
high performance code is required. This is a major area of improvement for future implementations of
Python and every subsequent Python version addresses it. Although we have to admit it can never be as fast
as a compiled language, we are convinced that it makes up for this deficiency by being super-efficient and
effective in other departments.

68

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

Setting Up a Python Environment

The starting step for our journey into the world of Data Science is the setup of our Python environment. We
usually have two options for setting up our environment:

o Install Python and the necessary libraries individually

e Use a pre-packaged Python distribution that comes with necessary libraries, i.e.
Anaconda

Anaconda is a packaged compilation of Python along with a whole suite of a variety of libraries,
including core libraries which are widely used in Data Science. Developed by Anaconda, formerly known
as Continuum Analytics, it is often the go-to setup for data scientists. Travis Oliphant, primary contributor
to both the numpy and scipy libraries, is Anaconda’s president and one of the co-founders. The Anaconda
distribution is BSD licensed and hence it allows us to use it for commercial and redistribution purposes.
A major advantage of this distribution is that we don’t require an elaborate setup and it works well on all
flavors of operating systems and platforms, especially Windows, which can often cause problems with
installing specific Python packages. Thus, we can get started with our Data Science journey with just one
download and install. The Anaconda distribution is widely used across industry Data Science environments
and it also comes with a wonderful IDE, Spyder (Scientific Python Development Environment), besides
other useful utilities like jupyter notebooks, the IPython console, and the excellent package management
tool, conda. Recently they have also talked extensively about Jupyterlab, the next generation UI for Project
Jupyter. We recommend using the Anaconda distribution and also checking out https://www.anaconda.
com/what-1is-anaconda/ to learn more about Anaconda.

Set Up Anaconda Python Environment

The first step in setting up your environment with the required Anaconda distribution is downloading

the required installation package from https://www.anaconda.com/download/, which is the provider of
the Anaconda distribution. The important point to note here is that we will be using Python 3.5 and the
corresponding Anaconda distribution. Python 3.5.2 was released on June 2016 compared to 3.6, which
released on December 2016. We have opted for 3.5 as we want to ensure that none of the libraries that we
will be using in this book have any compatibility issues. Hence, as Python 3.5 has been around for a long
time we avoid any such compatibility issues by opting for it. However, you are free to use Python 3.6 and
the code used in this book is expected to work without major issues. We chose to leave out Python 2.7 since
support for Python 2 will be ending in 2020 and from the Python community vision, it is clear that Python 3
is the future and we recommend you use it.

Download the Anaconda3-4.2.0-Windows-x86 64 package (the one with Python 3.5) from https://
repo.continuum.io/archive/. A screenshot of the target page is shown in Figure 2-1. We have chosen the
Windows OS specifically because sometimes, few Python packages or libraries cause issues with installing or
running and hence we wanted to make sure we cover those details. If you are using any other OS like Linux
or MacOSX, download the correct version for your OS and install it.

69

https://www.anaconda.com/what-is-anaconda/
https://www.anaconda.com/what-is-anaconda/
https://www.anaconda.com/download/
https://repo.continuum.io/archive/
https://repo.continuum.io/archive/

CHAPTER 2 * THE PYTHON MACHINE LEARNING ECOSYSTEM

C () | @ Secure | https//repo.continuum.io/archive/

i Apps 4 Gmail Misc Study R Related ML Intel Statistics Python Running Investing BookProject Code To Re

Anaconda2-4.3.@-Windows-x86_64.exe 412.8M 2017-91-27 14:17:59 2c@2e21£542d61760c3e19bfob3essfe
Anaconda3-4.3.@-Linux-x86.sh 398.4M 2017-01-27 14:14:29 3f173aalab2c2b6ab3f8acbd228271d7
Anaconda3-4.3.@-Linux-x86_64.sh 473.4M 2017-91-27 14:15:21 dbe2e78adecal923b43beZecaacd622?
Anaconda3-4.3.@-Mac05X-x86_64.pkg 423.1M 2017-91-27 14:26:32 30b108a%cbc5d215a60187c5de89ca59
Anaconda3-4.3.@-Mac05X-xB6_64.sh 362.6M 2017-01-27 14:26:15 eBd80c503c27d5c072d3e3 24001822641
Anaconda3-4.3.0-Windows-x86.exe 347.2M 2017-81-27 14:18:45 aeTec9752cf81c01983Fcfoddfad7cc2
Anaconda3-4.3.0-Windows-x86_64.exe 421.2M 2017-01-27 14:19:41 137043b39860519967759fcBea76514
Anaconda2-4.2.0-Mac05X-xB6_64.pkg 493.9M 2016-10-17 19:33:11 cd2ccc991b7f1503335367d80d031700
Anaconda3-4.2.@-Mac05X-xB6_64.pkg 497.1M 2016-1@-17 19:33:47 Sled7f9af7436a1a23068ebo0se9d6ad
Anaconda2-4.2.@-Linux-x86.sh 365.8M 2016-09-27 15:50:20 226582ebdf1d982e18efb2bdfS2cSees
Anaconda2-4.2.@-Linux-x86_64.sh 446.@M 2016-99-27 15:49:54 80d1fbed7014b71c6764d76fb403F217
Anaconda2-4.2.@-Mac05X-x86_64.s5h 346.4M 2016-89-27 15:58:02 52f8b7420c462575efc297cBfdebefle
Anaconda2-4.2.@-Windows-x86,exe 324.1M 2016-29-27 15:54:50 f4f12af881175%e56464eef52484963d
Anaconda2-4.2.@-Windows-xB86_64.exe 3gl.emM 2016-89-27 15:55:47 223045095687 24dacPael932139b9c37
Anaconda3-4.2.@-Linux-x86.sh 373.9M 2016-09-27 15:50:34 7acal@eleaSbodb@a318bdeed5253747
Anaconda3-4.2.@-Linux-x86_64.sh 455.9M 2016-29-27 15:50:04 4692f716c82deb5fabb59d78fof6e85¢

349.5M 2016-89-27 15:58:07 Tcb6le3SSebB60e342a5e27236e3f375
333.4M 2016-89-27 15:56:39 96e5feds52b22d667da936efbdedceisd
lanaconda3-4.2.0-Windows-x86 648 391.4M 2016-89-27 15:57:21 @caSefddcfe843762ade73bbb3f8dbod
Ara S — : 324.6M 2016-87-88 11:19:57 B813071788e08e236a323b5f7d337759
Anaconda2-4.1.1-Linux-x86_64.sh 399.6M 2016-87-08 11:19:56 fIbb3c@ccf23c9789bbB953352a68b13

2 £05X-xB6_64.5h
aconda3-4,2.0-Wind®

Anaconda2-4.1.1-Mac05X-xB6_64.pkg 345.@M 2016-87-88 11:19:59 #88beael19868dcelfaesesddlesc7bda
Anaconda2-4.1.1-Mac05X-x86_64.sh 295.8M 2016-87-88 11:20:00 fe2adad7as25e4e139a5122ad641bdac
Anaconda2-4.1.1-Windows-x86.exe 286.0M 2016-07-08 11:20:01 b319d6867c67723baT4aef4fodd3ISTE2
Anaconda2-4.1.1-Windows-x86_64.exe 341.2M 2016-87-88 11:28:01 1db0243dbfo2579f452d1b19ce245144
Anaconda3-4.1.1-Linux-x86.sh 329.1M 2016-87-28 11:20:02 @57620df8987ca62d5¢13491102547d9
Anaconda3-4.1.1-Linux-x86_64.sh 406,34 2016-87-88 11:20:02 dodce8d241f83ffc763504db50008e5h
Anaconda3-4.1.1-Mac05X-xB6_64.pkg 347.9M 2016-87-88 11:21:15 9d39642168324920850bd19637577f6e
Anaconda3-4.1.1-Mac05X-x86_64.sh 298.7TM 2016-87-88 11:21:17 1852268d5841869cbTcb3ag31bd63936
Anaconda3-4.1.1-Windows-x86.exe 293.8M 2016-07-08 11:21:18 39bd047c2169a9d072e984037487c %8
anaconda3-4.1.1-Windows-x86_64.exe 352.9M 2016-87-88 11:21:17 a3be294f8274c391148efdfbc63escasd
Anaconda2-4.1.@-Linux-x86.sh 324.4M 2016-26-28 11:28:28 96e842ef2d5789411c55ebofobece2314
Anaconda2-4.1.@-Linux-x86_64.sh 398.8M 2016-86-28 11:28:28 ©24d4264205d8d0c8533617dboaf f1d3

a dad a3 0 Maoncy u9c £8 ol 228 2 2036 0 39 33.39,30 hladagasdfeaa3cannnada Eagfd

Figure 2-1. Downloading the Anaconda package

Installing the downloaded file is as simple as double-clicking the file and letting the installer take care of
the entire process. To check if the installation was successful, just open a command prompt or terminal and
start up Python. You should be greeted with the message shown in Figure 2-2 identifying the Python and the
Anaconda version. We also recommend that you use the iPython shell (the command is ipython) instead of
the regular Python shell, because you get a lot of features including inline plots, autocomplete, and so on.

BE Command Prompt - on - a 4
pt - pyth

Microsoft Windows [Version 10.0.15063] A
(c) 2017 Microsoft Corporation. All rights reserved.

€:\Users'\DIP.DIPSLAPTOP>python -

Python 3.5.2 |Anaconda custom (64-bit)| (default, Jul 5 2016, 11:41:13) [MSC v.1900 64 bit (aMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.

L2

Figure 2-2. Verifying installation with the Python shell

This should complete the process of setting up your Python environment for Data Science and
Machine Learning.

70

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

Installing Libraries

We will not be covering the basics of Python, as we assume you are already acquainted with basic Python
syntax. Feel free to check out any standard course or book on Python programming to pick up on the basics.
We will cover one very basic but very important aspect of installing additional libraries. In Python the
preferred way to install additional libraries is using the pip installer. The basic syntax to install a package
from Python Package Index (PyPI) using pip is as follows.

pip install required package

This will install the required_package if it is present in PyPI. We can also use other sources other than
PyPI to install packages but that generally would not be required. The Anaconda distribution is already
supplemented with a plethora of additional libraries, hence it is very unlikely that we will need additional
packages from other sources.

Another way to install packages, limited to Anaconda, is to use the conda install command. This will
install the packages from the Anaconda package channels and usually we recommend using this, especially
on Windows.

Why Python for Data Science?

According to a 2017 survey by StackOverflow (https://insights.stackoverflow.com/survey/2017),
Python is world’s 5th most used language. It is one of the top three languages used by data scientists and one
of the most “wanted” language among StackOverflow users. In fact, in a recent poll by KDnuggets in 2017,
Python got the maximum number of votes for being the leading platform for Analytics, Data Science, and
Machine Learning based on the choice of users (http://www.kdnuggets.com/2017/08/python-overtakes-
r-leader-analytics-data-science.html). Python has a lot of advantages that makes it a language of
choice when it comes to the practices of Data Science. We will now try to illustrate these advantages and
argue our case for “Why Python is a language of choice for Data scientists?”

Powerful Set of Packages

Python is known for its extensive and powerful set of packages. In fact one of the philosophies shared by
Python is batteries included, which means that Python has a rich and powerful set of packages ready to be
used in a wide variety of domains and use cases. This philosophy is extended into the packages required
for Data Science and Machine Learning. Packages like numpy, scipy, pandas, scikit-learn, etc., which are
tailor-made for solving a variety of real-world Data Science problems, and are immensely powerful. This
makes Python a go-to language for solving Data Science related problems.

Easy and Rapid Prototyping

Python’s simplicity is another important aspect when we want to discuss its suitability for Data Science.
Python syntax is easy to understand as well as idiomatic, which makes comprehending existing code a
relatively simple task. This allows the developer to easily modify existing implementations and develop
his own ones. This feature is especially useful for developing new algorithms which may be experimental
or yet to be supported by any external library. Based on what we discussed earlier, Python development is
independent of time consuming build and link processes. Using the REPL shell, IDEs, and notebooks, you
can rapidly build and iterate over multiple research and development cycles and all the changes can be
readily made and tested.

71

https://insights.stackoverflow.com/survey/2017
http://www.kdnuggets.com/2017/08/python-overtakes-r-leader-analytics-data-science.html
http://www.kdnuggets.com/2017/08/python-overtakes-r-leader-analytics-data-science.html

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

Easy to Collaborate

Data science solutions are rarely a one man job. Often a lot of collaboration is required in a Data Science
team to develop a great analytical solution. Luckily Python provides tools that make it extremely easy to
collaborate for a diverse team. One of the most liked features, which empowers this collaboration, are
jupyter notebooks. Notebooks are a novel concept that allow data scientists to share the code, data, and
insightful results in a single place. This makes for an easily reproducible research tool. We consider this to
be a very important feature and will devote an entire section to cover the advantages offered by the use of
notebooks.

One-Stop Solution

In the first chapter we explored how Data Science as a field is interconnected to various domains. A typical
project will have an iterative lifecycle that will involve data extraction, data manipulation, data analysis,
feature engineering, modeling, evaluation, solution development, deployment, and continued updating

of the solution. Python as a multi-purpose programming language is extremely diverse and it allows
developers to address all these assorted operations from a common platform. Using Python libraries you
can consume data from a multitude of sources, apply different data wrangling operations to that data, apply
Machine Learning algorithms on the processed data, and deploy the developed solution. This makes Python
extremely useful as no interface is required, i.e. you don’t need to port any part of the whole pipeline to some
different programming language. Also enterprise level Data Science projects often require interfacing with
different programming languages, which is also achievable by using Python. For example, suppose some
enterprise uses a custom made Java library for some esoteric data manipulation, then you can use Jython
implementation of Python to use that Java library without writing custom code for the interfacing layer.

Large and Active Community Support

The Python developer community is very active and humongous in number. This large community ensures
that the core Python language and packages remain efficient and bug free. A developer can seek support
about a Python issue using a variety of platforms like the Python mailing list, stack overflow, blogs, and
usenet groups. This large support ecosystem is also one of the reasons for making Python a favored language
for Data Science.

Introducing the Python Machine Learning Ecosystem

In this section, we address the important components of the Python Machine Learning ecosystem and give

a small introduction to each of them. These components are few of the reasons why Python is an important
language for Data Science. This section is structured to give you a gentle introduction and acquaint you

with these core Data Science libraries. Covering all of them in depth would be impractical and beyond the
current scope since we would be using them in detail in subsequent chapters. Another advantage of having a
great community of Python developers is the rich content that can be found about each one of these libraries
with a simple search. The list of components that we cover is by no means exhaustive but we have shortlisted
them on the basis of their importance in the whole ecosystem.

Jupyter Notebooks

Jupyter notebooks, formerly known as ipython notebooks, are an interactive computational environment
that can be used to develop Python based Data Science analyses, which emphasize on reproducible
research. The interactive environment is great for development and enables us to easily share the notebook

72

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

and hence the code among peers who can replicate our research and analyses by themselves. These jupyter
notebooks can contain code, text, images, output, etc., and can be arranged in a step by step manner to

give a complete step by step illustration of the whole analysis process. This capability makes notebooks a
valuable tool for reproducible analyses and research, especially when you want to share your work with

a peer. While developing your analyses, you can document your thought process and capture the results

as part of the notebook. This seamless intertwining of documentation, code, and results make jupyter
notebooks a valuable tool for every data scientist.

We will be using jupyter notebooks, which are installed by default with our Anaconda distribution. This
is similar to the ipython shell with the difference that it can be used for different programming backends,
i.e. not just Python. But the functionality is similar for both of these with the added advantage of displaying
interactive visualizations and much more on jupyter notebooks.

Installation and Execution

We don’t require any additional installation for Jupyter notebooks, as it is already installed by the Anaconda
distribution. We can invoke the jupyter notebook by executing the following command at the command
prompt or terminal.

C:\>jupyter notebook

This will start a notebook server at the address localhost: 8888 of your machine. An important point to
note here is that you access the notebook using a browser so you can even initiate it on a remote server and
use it locally using techniques like ssh tunneling. This feature is extremely useful in case you have a powerful
computing resource that you can only access remotely but lack a GUI for it. Jupyter notebook allows you to
access those resources in a visually interactive shell. Once you invoke this command, you can navigate to the
address localhost:8888 in your browser, to find the landing page depicted in Figure 2-3, which can be used
to access existing notebooks or create new ones.

« C {3 O localhost2885/rees b @&'v @
£ Apps K Gmail Misc Study F Related ML Intel Seatistics Python Running Investing BookProject Code To Read List
~ jupyter
Files Runinin
Select items to perform actions on them Upload New- &

Figure 2-3. Jupyter notebook landing page

On the landing page we can initiate a new notebook by clicking the New button on top right. By default
it will use the default kernel (i.e., the Python 3.5 kernel) but we can also associate the notebook with a

73

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

different kernel (for example a Python 2.7 kernel, if installed in your system). A notebook is just a collection
of cells. There are three major types of cells in a notebook:

1. Code cells: Just like the name suggests, these are the cells that you can use to write
your code and associated comments. The contents of these cells are sent to the
kernel associated with the notebook and the computed outputs are displayed as
the cells’ outputs.

2. Markdown cells: Markdown can be used to intelligently notate the computation
process. These can contain simple text comments, HTML tags, images, and even
Latex equations. These will come in very handy when we are dealing with a new
and non-standard algorithm and we also want to capture the stepwise math and
logic related to the algorithm.

3. Raw cells: These are the simplest of the cells and they display the text written in
them as is. These can be used to add text that you don’t want to be converted by
the conversion mechanism of the notebooks.

In Figure 2-4 we see a sample jupyter notebook, which touches on the ideas we just discussed in this section.

This is a level 1 heading

This can be usad to Arrange your notebodk

£.2.0 (&2-blit)| (default, Jul 5 2016, 11:21:13) [M5C v.190@ &2 bIt (AMDEL)]"

In [5): | import matplotlib.pyplot as pit
import numpy as np

t = np.arange(0.@, 2.8, 8.01)
i = np.cos(2*np.pi*t)
plt.plot(t, =)

A simple cosine curve

st 4

0.0 4

Energy (])

0.0 0.5 10 15 2.0
time (s)

Raw NBConvert Format | Mone v

==\,-'(r+b1

Figure 2-4. Sample jupyter notebook

74

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

NumPy

Numpy is the backbone of Machine Learning in Python. It is one of the most important libraries in Python
for numerical computations. It adds support to core Python for multi-dimensional arrays (and matrices) and
fast vectorized operations on these arrays. The present day NumPy library is a successor of an early library,
Numeric, which was created by Jim Hugunin and some other developers. Travis Oliphant, Anaconda’s
president and co-founder, took the Numeric library as a base and added a lot of modifications, to launch the
present day NumPy library in 2005. It is a major open source project and is one of the most popular Python
libraries. It’s used in almost all Machine Learning and scientific computing libraries. The extent of popularity
of NumPy is verified by the fact that major OS distributions, like Linux and MacOS, bundle NumPy as a
default package instead of considering it as an add-on package.

Numpy ndarray

All of the numeric functionality of numpy is orchestrated by two important constituents of the numpy package,
ndarray and Ufuncs (Universal function). Numpy ndarray is a multi-dimensional array object which is the
core data container for all of the numpy operations. Universal functions are the functions which operate on
ndarrays in an element by element fashion. These are the lesser known members of the numpy package and
we will try to give a brief introduction to them in the later stage of this section. We will mostly be learning
about ndarrays in subsequent sections. (We will refer to them as arrays from now on for simplicity’s sake.)
Arrays (or matrices) are one of the fundamental representations of data. Mostly an array will be of
a single data type (homogeneous) and possibly multi-dimensional sometimes. The numpy ndarray isa
generalization of the same. Let’s get started with the introduction by creating an array.

In [4]: import numpy as np
...t arr = np.array([1,3,4,5,6])
:arr

Out[4]: array([1, 3, 4, 5, 6])
In [5]: arr.shape

Out[5]: (5,)

In [6]: arr.dtype

Out[6]: dtype('int32")

In the previous example, we created a one-dimensional array from a normal list containing integers.
The shape attribute of the array object will tell us about the dimensions of the array. The data type was
picked up from the elements as they were all integers the data type is int32. One important thing to keep
in mind is that all the elements in an array must have the same data type. If you try to initialize an array in
which the elements are mixed, i.e. you mix some strings with the numbers then all of the elements will get
converted into a string type and we won'’t be able to perform most of the numpy operations on that array. So a
simple rule of thumb is dealing only with numeric data. You are encouraged to type in the following code in
an ipython shell to look at the error message that comes up in such a scenario!

In [16]: arr = np.array([1,'st',"'er',3])
...t arr.dtype

Out[16]: dtype('<U11")

In [17]: np.sum(arr)

75

https://en.wikipedia.org/wiki/Jim_Hugunin#Jim Hugunin

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

Creating Arrays

Arrays can be created in multiple ways in numpy. One of the ways was demonstrated earlier to create a single-
dimensional array. Similarly we can stack up multiple lists to create a multidimensional array.

In [19]: arr = np.array([[l,z,a],[2,4,6],[8,8,8]])
: arr.shape

out[19]: (3, 3)
In [20]: arr

Out[20]:

array([[1, 2, 3],
[2) 4) 6])
(8, 8, 8]])

In addition to this we can create arrays using a bunch of special functions provided by numpy.
np.zeros: Creates a matrix of specified dimensions containing only zeroes:

In [21]: arr = np.zeros((2,4))
c..toarr
Out[21]:array([[0., 0., 0., 0.],
[0., 0., 0., 0.]])
np.ones: Creates a matrix of specified dimension containing only ones:

In [22]: arr = np.ones((2,4))

...: arr

Out[22]:

array([[1., 1., 1., 1.],
[1., 1., 1., 1.1])

np.identity: Creates an identity matrix of specified dimensions:

In [23]: arr = np.identity(3)

c..0arr
Out[23]:
array([[1., 0., o0.],
[0., 1., o0.],
[0., 0., 1.]])

Often, an important requirement is to initialize an array of a specified dimension with random values.
This can be done easily by using the randn function from the numpy . random package:

In [25]: arr = np.random.randn(3,4)
c..toarr

Out[25]:

array([[0.0102692 , -0.13489664, 1.03821719, -0.28564286],
[-1.12651838, 1.41684764, 1.11657566, -0.1909584],
[2.20532043, 0.14813109, 0.73521382, 1.1270668]])

76

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

In practice, most of the arrays are created during reading in the data. We will cover the text data retrieval
operations of numpy very briefly as we will try to use pandas generally, for our data ingestion process. (More
on this in a later part of the chapter.)

One of the functions that we can use to read data from text file to a numpy array is genfromtext. This
function can open a text file and read in data delimited by any character. (delimiter for a comma separated

“n

fileis “”). Since it is not our preferred way of retrieving data, we will give a brief example of the function here.

In [39]: b = BytesIO(b"2,23,33\n32,42,63.4\n35,77,12")

: arr = np.genfromtxt(b, delimiter=",")
:arr

Out[39]:

array([[2., 23., 33.],
[32., 42., 63.4],
[35., 77., 12.1])

Accessing Array Elements

Once we have created an array by reading in our data, the next important part is to access that data using a
wide variety of mechanisms. Numpy provides a lot of ways in which array elements can be accessed. We will
try to give the most popular useful ways that facilitate this.

Basic Indexing and Slicing

Ndarray can leverage the basic indexing operations that are followed by the 1ist class, i.e. 1ist object [obj].
If the obj is not an ndarray object, then the indexing is said to be basic indexing.

Note One important point to remember is that basic indexing will always return a view of the original
array. It means that it will only refer to the original array and any change in values will be reflected in the
original array also.

For example, if we want to access the complete second row of the array in one of the earlier examples,
we can simply refer to it using arr[1].

In [44]: arr[1]
Out[44]: array([32., 42., 63.4])

This access becomes interesting in the case of an array having more than two dimensions. Consider the
following code snippet.

In [48]: arr = np.arange(12).reshape(2,2,3)

In [49]: arr
out[49]:
array([[[0, 1, 2],

0

3, 4, 5],
6) 7) 8])
9, 10, 11]]])

[
[
([
[

7

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

In [50]: arr[0]

Out[50]:

array([[o0, 1, 2],
(3, 4, 511)

Here we see that using a similar indexing scheme as above, we get an array having one lesser dimension
than the original array.

The next important concept in accessing arrays is the concept of slicing arrays. Suppose we want
to have a collection of elements only instead of all the elements. Then we can use slicing to access the
elements. We will demonstrate the concept with a one-dimensional array.

In [57]: arr = np.arange(10)
...: arr[5:]
Out[s57]: array([5, 6, 7, 8, 9])

In [58]: arr[5:8]
Out[58]: array([5, 6, 7])

In [60]: arr[:-5]
Out[60]: array([o, 1, 2, 3, 4])

If the number of dimensions in the object supplied is less than the dimension of the array being
accessed then the colon (:) is assumed for all the dimensions. Consider the following example

In [13]: arr = np.arange(12).reshape(2,2,3)

eess AT
Out[13]:
array([[[o, 1, 2],
[3, 4, 5],
([6 7, 8],
[9, 10, 11]]])

In [14]: arr[1:2]
Out[14]:
array([[[6, 7, 8],

[9, 10, 11]]])

Another way to access an array is to use dots (...) based indexing. Suppose in a three-dimensional array
we want to access the value of only one column. We can do it in two ways.

In [8]: arr = np.arange(27).reshape(3,3,3)

eees AT
Out[8]:
array([[[o, 1, 2],
[3, 4, 5],
[6, 7, 811,

[[9, 10, 11],
[12, 13, 14],
[15, 16, 17]],

78

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

[[18, 19, 20],
[21, 22, 23],
[24, 25, 26]]])

Now if we want to access the third column, we can use two different notations to access that column:

In [10]: arr[:,:,2]

Out[10]:

array([[2, 5, 8],
[11, 14, 17],
[20, 23, 26]])

We can also use a dot notation in the following way. Both of the methods gets us the same value but
the dot notation is concise. The dot notation stands for as many colons as required to complete an indexing
operation.

In [11]: arr[...,2]

Out[11]:

array([[2, 5, 8],
[11, 14, 17],
[20, 23, 26]])

Advanced Indexing

The difference in advanced indexing and basic indexing comes from the type of object being used to
reference the array. If the object is an ndarray object (data type int or bool) or a non-tuple sequence object
or a tuple object containing an ndarray (data type integer or bool), then the indexing being done on the
array is said to be advanced indexing.

Note Advanced indexing will always return the copy of the original array data.

Integer array indexing: This advanced indexing occurs when the reference object is also an array. The
simplest type of indexing is when we provide an array that’s equal in dimensions to the array being accessed.
For example:

In [19]: arr = np.arange(9).reshape(3,3)
...:arr

Out[19]:

array([[o, 1, 2],

(3, 4, 5],

(6, 7, 811)

In [20]: arr[[o0,1,2],[1,0,0]]
Out[20]: array([1, 3, 6])

In this example we have provided an array in which the first part identifies the rows we want to access

and the second identifies the columns which we want to address. This is quite similar to providing a
collective element-wise address.

79

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

Boolean indexing: This advanced indexing occurs when the reference object is an array of Boolean
values. This is used when we want to access data based on some conditions, in that case, Boolean indexing
can be used. We will illustrate it with an example. Suppose in one array, we have the names of some cities
and in another array, we have some data related to those cities.

In [3]: cities = np.array(["delhi","bangalore","mumbai","chennai”, "bhopal"])

..: city data = np.random.randn(5,3)

...: city data
Out[3]:array([[1.78780089, -0.25099029, -0.26002244],
[1.41016167, -0.43878679, 0.4912639],
[-0.32176723, -0.01912549, -1.22891881],
[-0.93371835, -0.03604015, -0.37319556],
[1.48625779, 0.62758167, 0.77321756]])

In [4]: city data[cities =="delhi"]
Out[4]: array([[1.78780089, -0.25099029, -0.26002244]])

We can also use Boolean indexing for selecting some elements of an array that satisfy a particular
condition. For example, in the previous array suppose we want to only select non-zero elements. We can do
that easily using the following code.

In [6]: city data[city data >0]

out[6]:

array([1.78780089, 1.41016167, 0.4912639 , 1.48625779, 0.62758167,
0.77321756])

We observe that the shape of the array is not maintained so we directly cannot always use this indexing
method. But this method is quite useful in doing conditional data substitution. Suppose in the previous case,
we want to substitute all the non-zero values with 0. We can achieve that operation by the following code.

In [7]: city data[city data >0] =0
1 city data

[0 , -0.25099029, -0.26002244],
[o. , -0.43878679, O. 1,
[-0.32176723, -0.01912549, -1.22891881],
[-0.93371835, -0.03604015, -0.37319556],
[o > O. > O. 1

O w

Operations on Arrays

At the start of this section, we mentioned the concept of Universal functions (Ufuncs). In this sub-section,
we learn some of the functionalities provided by those functions. Most of the operations on the numpy arrays
is achieved by using these functions. Numpy provides a rich set of functions that we can leverage for various
operations on arrays. We cover some of those functions in brief, but we recommend you to always refer to
the official documentation of the project to learn more and leverage them in your own projects.

Universal functions are functions that operate on arrays in an element by element fashion. The
implementation of Ufunc is vectorized, which means that the execution of Ufuncs on arrays is quite fast. The
Ufuncs implemented in the numpy package are implemented in compiled C code for speed and efficiency.
But it is possible to write custom functions by extending the numpy . ufunc class of the numpy package.

80

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

Ufuncs are simple and easy to understand once you are able to relate the output they produce on a
particular array.

In [23]: arr = np.arange(15).reshape(3,5)
...t arr

Out[23]:

array([[0, 1, 2, 3, 4],
[5) 6) 7) 8) 9])
[10, 11, 12, 13, 14]])

In [24]: arr + 5

Out[24]:

arraY([[5) 6) 7) 8) 9])
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19]])

In [25]: arr * 2

Out[25]:

array([[0, 2, 4, 6, 8],
[10, 12, 14, 16, 18],
[20, 22, 24, 26, 28]])

We see that the standard operators when used in conjunction with arrays work element-wise. Some
Ufuncs will take two arrays as input and output a single array, while a rare few will output two arrays also.

In [29]: arrl = np.arange(15).reshape(5,3)
..t arr2 = np.arange(5).reshape(5,1)
: arr2 + arri

Out[29]:
array([[o, 1, 2]
» 5, 6]
) 9) 10]
» 13, 14]
) 8]

4
8
2
6, 17, 1

[
[
[
[1
[1

In [30]: arri
Out[30]:

array([[o, 1, 2
[3, 4, 5
[6, 7, 8
[9, 10, 11
[12, 13, 14

In [31]: arr2
Out[31]:

81

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

array([[o],
[1],
[2],
(31,
[411)

Here we see that we were able to add up two arrays even when they were of different sizes. This is
achieved by the concept of broadcasting. We will conclude this brief discussion on operations on arrays by
demonstrating a function that will return two arrays.

In [32]: arri = np.random.randn(5,3)
:oarrl

Out[32]:

array([[-0.57863219, -0.36613451, -0.92311378],
[0.81557068, 0.20486617, -0.16740779],
[0.73806067, 1.30173294, 0.6144705],
[0.26294157, -0.09300711, 1.1794524],
[0.25011242, -0.65374314, -0.57663904]])

In [35]: np.modf(arr1)
Out[35]:
(array([[-0.57863219, -0.36613451, -0.92311378],
0.81557068, 0.20486617, -0.16740779],
0.73806067, 0.30173294, 0.6144705],
0.26294157, -0.09300711, 0.1794524],
0.25011242, -0.65374314, -0.57663904]]),
0., -0., -0.
0., 0., -0.
0., 1., oO.
0., -0., 1.
0., -0., -0.

[-
[
[
[
[
array([[-
[
[
[
[

— e e

)

)

)

>
-0.11))

The function modf will return the fractional and the integer part of the input supplied to it. Hence it will
return two arrays of the same size. We tried to give you a basic idea of the operations on arrays provided by
the numpy package. But this list is not exhaustive; for the complete list you can refer to the reference page for
Ufuncs at https://docs.scipy.org/doc/numpy/reference/ufuncs.html.

Linear Algebra Using numpy

Linear algebra is an integral part of the domain of Machine Learning. Most of the algorithms we will deal
with can be concisely expressed using the operations of linear algebra. Numpy was initially built to provide
the functions similar to MATLAB and hence linear algebra functions on arrays were always an important
part of it. In this section, we learn a bit about performing linear algebra on ndarrays using the functions
implemented in the numpy package.

One of the most widely used operations in linear algebra is the dot product. This can be performed on
two compatible (brush up on your matrices and array skills if you need to know which arrays are compatible
for a dot product) ndarrays by using the dot function.

np.array([

In [39]: A [1,2,3],
np.array([[9,8,7],

(4 ,
: B [6 s

6
y4

82

https://docs.scipy.org/doc/numpy/reference/ufuncs.html

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

In [40]: A.dot(B)

Out[40]:

array([[24, 24, 24],
[72, 69, 66],
[120, 114, 108]])

Similarly, there are functions implemented for finding different products of matrices like inner, outer, and so
on. Another popular matrix operation is transpose of a matrix. This can be easily achieved by using the T function.

In [41]: A = np.arange(15).reshape(3,5)
In [46]: A.T
Out[46]:
array([[o, 5, 10],
[1, 6, 11],
[2, 7,12],
[3) 8) 13]’
[4, 9, 14]])

Oftentimes, we need to find out decomposition of a matrix into its constituents factors. This is called
matrix factorization. This can be achieved by the appropriate functions. A popular matrix factorization
method is SVD factorization (covered briefly in Chapter 1 concepts), which returns decomposition of a
matrix into three different matrices. This can be done using linalg. svd function.

In [48]: np.linalg.svd(A)

Out[48]:

(array([[-0.15425367, 0.89974393, 0.40824829
[-0.50248417, 0.28432901, -0.81649658
[-0.85071468, -0.3310859 , 0.40824829]]),

array([3.17420265e+01, 2.72832424e+00, 4.58204637e-16]),
array([[-0.34716018, -0.39465093, -0.44214167, -0.48963242, -0.53712316],

0.69244481, -0.37980343, -0.06716206, 0.24547932, 0.55812069],

0

0

0

1,
1

[-
[-
[0.33717486, -0.77044776, 0.28661392, 0.38941603, -0.24275704],
[-0.36583339, 0.32092943, -0.08854543, 0.67763613, -0.54418674],
[-0.39048565, 0.05843412, 0.8426222 , -0.29860414, -0.21196653]]))

Linear algebra is often also used to solve a system of equations. Using the matrix notation of system of
equations and the provided function of numpy, we can easily solve such a system of equation. Consider the
system of equations:

7xX + 5y -3z = 16
3x - 5y + 2z = -8
5x +3y -7z =0

This can be represented as two matrices: the coefficient matrix (a in the example) and the constants
vector (b in the example).

In [51]:

np.array([[7,5,-3], [3,-5,2],[5,3,-7]])
np.array([16,-8,0])
np.linalg.solve(a, b)

X X T o
I

Out[51]: array([1., 3., 2.])

83

http://dx.doi.org/10.1007/978-1-4842-3207-1_1

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

We can also check if the solution is correct using the np.allclose function.

In [52]: np.allclose(np.dot(a, x), b)
Out[52]: True

Similarly, functions are there for finding the inverse of a matrix, eigen vectors and eigen values of
a matrix, norm of a matrix, determinant of a matrix, and so on, some of which we covered in detail in
Chapter 1. Take a look at the details of the function implemented at https://docs.scipy.org/doc/numpy/
reference/routines.linalg.html.

Pandas

Pandas is an important Python library for data manipulation, wrangling, and analysis. It functions as an
intuitive and easy-to-use set of tools for performing operations on any kind of data. Initial work for pandas
was done by Wes McKinney in 2008 while he was a developer at AQR Capital Management. Since then,

the scope of the pandas project has increased a lot and it has become a popular library of choice for data
scientists all over the world. Pandas allows you to work with both cross-sectional data and time series based
data. So let’s get started exploring pandas!

Data Structures of Pandas
All the data representation in pandas is done using two primary data structures:
e Series

e Dataframes

Series

Series in pandas is a one-dimensional ndarray with an axis label. It means that in functionality, it is
almost similar to a simple array. The values in a series will have an index that needs to be hashable. This
requirement is needed when we perform manipulation and summarization on data contained in a series
data structure. Series objects can be used to represent time series data also. In this case, the index is a
datetime object.

Dataframe

Dataframe is the most important and useful data structure, which is used for almost all kind of data
representation and manipulation in pandas. Unlike numpy arrays (in general) a dataframe can contain
heterogeneous data. Typically tabular data is represented using dataframes, which is analogous to an Excel
sheet or a SQL table. This is extremely useful in representing raw datasets as well as processed feature sets
in Machine Learning and Data Science. All the operations can be performed along the axes, rows, and
columns, in a dataframe. This will be the primary data structure which we will leverage, in most of the use
cases in our later chapters.

84

http://dx.doi.org/10.1007/978-1-4842-3207-1_1
https://docs.scipy.org/doc/numpy/reference/routines.linalg.html
https://docs.scipy.org/doc/numpy/reference/routines.linalg.html

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

Data Retrieval

Pandas provides numerous ways to retrieve and read in data. We can convert data from CSV files, databases,
flat files, and so on into dataframes. We can also convert a list of dictionaries (Python dict) into a dataframe.
The sources of data which pandas allows us to handle cover almost all the major data sources. For our
introduction, we will cover three of the most important data sources:

o List of dictionaries
e (CSVfiles

e Databases

List of Dictionaries to Dataframe

This is one of the simplest methods to create a dataframe. It is useful in scenarios where we arrive at the data
we want to analyze, after performing some computations and manipulations on the raw data. This allows us
to integrate a pandas based analysis into data being generated by other Python processing pipelines.

In[27]: import pandas as pd
In[28]: d = [{'city':'Delhi',"data":1000},
et {'city':'Bangalore',"data":2000},
{"city"':'Mumbai',"data":1000}]
In[29]: pd.DataFrame(d)

Out[29]:

city data
0 Delhi 1000
1 Bangalore 2000
2 Mumbai 1000

In[30]: df = pd.DataFrame(d)

In[31]: df
Out[31]:

city data
0 Delhi 1000
1 Bangalore 2000
2 Mumbai 1000

Here we provided a list of Python dictionaries to the DataFrame class of the pandas library and the
dictionary was converted into a DataFrame. Two important things to note here: first the keys of dictionary
are picked up as the column names in the dataframe (we can also supply some other name as arguments
for different column names), secondly we didn’t supply an index and hence it picked up the default index of
normal arrays.

CSV Files to Dataframe

CSV (Comma Separated Files) files are perhaps one of the most widely used ways of creating a

dataframe. We can easily read in a CSV, or any delimited file (like TSV), using pandas and convert

into a dataframe. For our example we will read in the following file and convert into a dataframe by using
Python. The data in Figure 2-5 is a sample slice of a CSV file containing the data of cities of the world from
http://simplemaps.com/data/world-cities. We will use the same data in a later part of this chapter also.

85

http://simplemaps.com/data/world-cities

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

city,city_ascii,lat,lng,pop,country,iso2,iso3,province

Qal eh-ye Now,Qal eh-ye,34.983080013,63.13329964,2997,Afghanistan,AF,AFG,Badghis
Chaghcharan,Chaghcharan,34.5167011,65.25000063,15000,Afghanistan, AF,AFG,Ghor
Lashkar Gah,lLashkar Gah,31.58299802,64.35999955,201546,Afghanistan,AF,AFG,Hilmand
Zaranj,Zaranj,31.112080108,61.88699752,49851,Afghanistan,AF,AFG,Nimroz

Tarin Kowt,Tarin Kowt,32.63329815,65.86669865,10000,Afghanistan,AF,AFG,Uruzgan
Zareh Sharan,Zareh Sharan,32.85600016,68.41670453,13737,Afghanistan,AF,AFG,Paktika
Asadabad,Asadabad, 34.86600004,71.150800459,48400,Afghanistan,AF,AFG,Kunar
Talogan,Talogan,36.72999904,69. 54000364 ,64256,Afghanistan,AF,AFG, Takhar

Mahmud-E Eraqi,Mahmud-E Eraqi,35.01669608,69.33330065,7487,Afghanistan,AF,AFG,Kapisa
Mehtar Lam,Mehtar Lam,34.65000001,70.16670052,17345,Afghanistan,AF,AFG,Laghman
Baraki Barak,Baraki Barak,33.9667021,68.96670354,22305,Afghanistan,AF,AFG, Logar
Aybak,Aybak, 36.261080015,68.04000051,24000,Afghanistan,AF,AFG,Samangan

Figure 2-5. A sample CSV file

We can convert this file into a dataframe with the help of the following code leveraging pandas.
In [1]: import pandas as pd

In [2]: city data = pd.read csv(filepath or buffer='simplemaps-worldcities-basic.csv")
In [3]: city data.head(n=10)

Out[3]:

city city ascii lat lng pop country \

0 Qal eh-ye Now Qal eh-ye 34.983000 63.133300 2997 Afghanistan
Chaghcharan Chaghcharan 34.516701 65.250001 15000 Afghanistan
Lashkar Gah Lashkar Gah 31.582998 64.360000 201546 Afghanistan
Zaranj Zaranj 31.112001 61.886998 49851 Afghanistan

Tarin Kowt Tarin Kowt 32.633298 65.866699 10000 Afghanistan

Zareh Sharan Zareh Sharan 32.850000 68.416705 13737 Afghanistan
Asadabad Asadabad 34.866000 71.150005 48400 Afghanistan

Talogan Talogan 36.729999 69.540004 64256 Afghanistan

Mahmud-E Eraqi Mahmud-E Eraqi 35.016696 69.333301 7407 Afghanistan
Mehtar Lam Mehtar Lam 34.650000 70.166701 17345 Afghanistan

W oo~NOUT B WN B

iso2 iso3 province
AF AFG Badghis
AF AFG Ghor

AF AFG Hilmand
AF AFG Nimroz
AF AFG Uruzgan
AF AFG Paktika
AF AFG Kunar
AF AFG Takhar
AF AFG Kapisa
AF AFG Laghman

O oo~y OUVT B WNE O

As the file we supplied had a header included, those values were used as the name of the columns in
the resultant dataframe. This is a very basic yet core usage of the function pandas.read _csv. The function
comes with a multitude of parameters that can be used to modify its behavior as required. We will not cover

86

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

the entire gamut of parameters available and you are encouraged to read the documentation of this function
as this is one of the starting point of most Python based data analysis.

Databases to Dataframe

The most important data source for data scientists is the existing data sources used by their organizations.
Relational databases (DBs) and data warehouses are the de facto standard of data storage in almost all of the
organizations. Pandas provides capabilities to connect to these databases directly, execute queries on them
to extract data, and then convert the result of the query into a structured dataframe. The pandas.from_sql
function combined with Python’s powerful database library implies that the task of getting data from DBs is
simple and easy. Due to this capability, no intermediate steps of data extraction are required. We will now take
an example of reading data from a Microsoft SQL Server database. The following code will achieve this task.

server = 'xxxxxxxx' # Address of the database server

user = 'XxXxxxx' # the username for the database server

password = 'xxxxx' # Password for the above user

database = 'xxxxx' # Database in which the table is present

conn = pymssql.connect(server=server, user=user, password=password, database=database)
query = "select * from some_table"

df = pd.read _sql(query, conn)

The important to thing to notice here is the connection object (conn in the code). This object is the
one which will identify the database server information and the type of database to pandas. Based on the
endpoint database server we will change the connection object. For example we are using the pymssql
library for access to Microsoft SQL server here. If our data source is changed to a Postgres database, the
connection object will change but the rest of the procedure will be similar. This facility is really handy when
we need to perform similar analyses on data originating from different sources. Once again, the read_sql
function of pandas provides a lot of parameters that allow us to control its behavior. We also recommend you
to check out the sqlalchemy library, which makes creating connection objects easier irrespective of the type
of database vendor and also provides a lot of other utilities.

Data Access

The most important part after reading in our data is that of accessing that data using the data structure’s
access mechanisms. Accessing data in the pandas dataframe and series objects is very much similar to the
access mechanism that exist for Python lists or numpy arrays. But they also offer some extra methods for
data access specific to dataframe/series.

Head and Tail

In the previous section we witnessed the method head. It gives us the first few rows (by default 5) of the
data. A corresponding function is tail, which gives us the last few rows of the dataframe. These are one of
the most widely used pandas functions, as we often need to take a peek at our data as and when we apply
different operations/selections on it. We already have seen the output of head, so we’ll use the tail function
on the same dataframe and see its output.

In [11]: city data.tail()

Out[11]:

city city ascii lat 1lng pop country \

7317 Mutare Mutare -18.970019 32.650038 216785.0 Zimbabwe

87

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

7318 Kadoma Kadoma -18.330006 29.909947 56400.0 Zimbabwe

7319 Chitungwiza Chitungwiza -18.000001 31.100003 331071.0 Zimbabwe
7320 Harare Harare -17.817790 31.044709 1557406.5 Zimbabwe

7321 Bulawayo Bulawayo -20.169998 28.580002 697096.0 Zimbabwe

iso2 iso3 province

7317 ZW ZWE Manicaland

7318 ZW ZWE Mashonaland West
7319 ZW ZWE Harare

7320 ZW ZWE Harare

7321 ZW ZWE Bulawayo

Slicing and Dicing

The usual rules of slicing and dicing data that we used in Python lists apply to the Series object as well.

In [12]: series es = city data.lat
In [13]: type(series_es)
Out[13]: pandas.core.series.Series

In [14]: series es[1:10:2]
Out[14]:

1 34.516701

3 31.112001

5 32.850000

7 36.729999

9 34.650000

Name: lat, dtype: float64

In [15]: series es[:7]
Out[15]:

0 34.983000

1 34.516701

2 31.582998

3 31.112001

4 32.633298

5 32.850000

6 34.866000

Name: lat, dtype: float64

In [23]: series es[:-7315]
Out[23]:

0 34.983000

1 34.516701

2 31.582998

3 31.112001

4 32.633298

5 32.850000

6 34.866000

Name: lat, dtype: float64

88

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

The examples given here are self-explanatory and you can refer to the numpy section for more details.
Similar slicing rules apply for dataframes also but the only difference is that now simple slicing refers to
the slicing of rows and all the other columns will end up in the result. Consider the following example

In [24]: city data[:7]

Out[24]:

city city ascii lat lng pop country \

0 Qal eh-ye Now Qal eh-ye 34.983000 63.133300 2997 Afghanistan

1 Chaghcharan Chaghcharan 34.516701 65.250001 15000 Afghanistan

2 Lashkar Gah Lashkar Gah 31.582998 64.360000 201546 Afghanistan
3 Zaranj Zaranj 31.112001 61.886998 49851 Afghanistan

4 Tarin Kowt Tarin Kowt 32.633298 65.866699 10000 Afghanistan

5 Zareh Sharan Zareh Sharan 32.850000 68.416705 13737 Afghanistan
6 Asadabad Asadabad 34.866000 71.150005 48400 Afghanistan

iso2 iso3 province
0 AF AFG Badghis

1 AF AFG Ghor

2 AF AFG Hilmand

3 AF AFG Nimroz

4 AF AFG Uruzgan

5 AF AFG Paktika

6 AF AFG Kunar

For providing access to specific rows and specific columns, pandas provides useful functions like iloc
and loc which can be used to refer to specific rows and columns in a dataframe. There is also the ix function
but we recommend using either loc or iloc. The following examples leverages the iloc function provided
by pandas. This allows us to select the rows and columns using structure similar to array slicing. In the
example, we will only pick up the first five rows and the first four columns.

In [28]: city data.iloc[:5,:4]

Out[28]:

city city ascii lat Ing

0 Qal eh-ye Now Qal eh-ye 34.983000 63.133300
1 Chaghcharan Chaghcharan 34.516701 65.250001
2 Lashkar Gah Lashkar Gah 31.582998 64.360000
3 Zaranj Zaranj 31.112001 61.886998

4 Tarin Kowt Tarin Kowt 32.633298 65.866699

Another access mechanism is Boolean based access to the dataframe rows or columns. This is
particularly important for dataframes, as it allows us to work with a specific set of rows and columns. Let’s
consider the following example in which we want to select cities that have population of more than 10
million and select columns that start with the letter 1:

In [56]: city data[city data['pop'] >
10000000] [city data.columns[pd.Series(city data.columns).str.
startswith('1")]]
Out[53]:
lat 1Ing

89

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

360 -34.602502 -58.397531
1171 -23.558680 -46.625020

2068
3098
3110
3492
4074
4513
5394
6124
7071

31.
28.
19.
35.
19.
24.
55
41.
40.

216452
669993
016990
685017
442442
869992

.752164

104996
749979

121.436505
77.230004
72.856989
139.751407
-99.130988
66.990009
37.615523
29.010002
-73.980017

When we select data based on some condition, we always get the part of dataframe that satisfies the
condition supplied. Sometimes we want to test a condition against a dataframe but want to preserve the
shape of the dataframe. In these cases, we can use the where function (check out numpy's where function
also to see the analogy!). We'll illustrate this function with an example in which we will try to select all the
cities that have population greater than 15 million.

In [6]: city greater 1omil = city data[city_data['pop'] > 10000000]

In [23]: city greater 10mil.where(city greater 10omil.population > 15000000)
Out[23]:
city city ascii lat 1lng population country iso2 iso3 \

360 NaN NaN NaN NaN NaN NaN NaN NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NaN NaN NaN NaN NaN NaN NaN NaN

Mumbai Mumbai 19.016990 72.856989 15834918.0 India IN IND
Tokyo Tokyo 35.685017 139.751407 22006299.5 Japan JP JPN
NaN NaN NaN NaN NaN NaN NaN

NaN NaN NaN NaN NaN NaN NaN

NaN NaN NaN NaN NaN NaN NaN

NaN NaN NaN NaN NaN NaN NaN

NaN NaN NaN NaN NaN NaN NaN

1171
2068
3098
3110
3492
4074
4513
5394
6124
7071

NaN
NaN
NaN
NaN
NaN

province
360 NaN

1171
2068
3098
3110
3492
4074
4513
5394
6124
7071

NaN
NaN
NaN

Maharashtra

Tok
NaN
NaN
NaN
NaN
NaN

yo

Here we see that we get the output dataframe of the same size but the rows that don’t conform to the

condition are replaced with NaN.

90

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

In this section, we learned some of the core data access mechanisms of pandas dataframes. The data
access mechanism of pandas are as simple and extensive to use as with numpy this ensures that we have
various way to access our data.

Data Operations

In subsequent chapters of our book, the pandas dataframe will be our data structure of choice for most data
processing and wrangling operations. So we would like to spend some more time exploring some important
operations that can be performed on dataframes using specific supplied functions.

Values Attribute

Each pandas dataframe will have certain attributes. One of the important attributes is values. It is important
as it allows us access to the raw values stored in the dataframe and if they all homogenous i.e., of the

same kind then we can use numpy operations on them. This becomes important when our data is a mix of
numeric and other data types and after some selections and computations, we arrive at the required subset
of numeric data. Using the values attribute of the output dataframe, we can treat it in the same way as a
numpy array. This is very useful when working with feature sets in Machine Learning. Traditionally, numpy
vectorized operations are much faster than function based operations on dataframes.

In [55]: df = pd.DataFrame(np.random.randn(8, 3),
columns=['A", 'B', 'C'])

In [56]: df
Out[56]:

A B C
0 -0.271131 0.084627 -1.707637
1 1.895796 0.590270 -0.505681
2 -0.628760 -1.623905 1.143701
3 0.005082 1.316706 -0.792742
4 0.135748 -0.274006 1.989651
5 1.068555 0.669145 0.128079
6 -0.783522 0.167165 -0.426007
7 0.498378 -0.950698 2.342104

In [58]: nparray = df.values
In [59]: type(nparray)
Out[59]: numpy.ndarray

Missing Data and the fillna Function

In real-world datasets, the data is seldom clean and polished. We usually will have a lot of issues with data
quality (missing values, wrong values and so on). One of the most common data quality issues is that of
missing data. Pandas provides us with a convenient function that allows us to handle the missing values of a
dataframe.

For demonstrating the use of the fillna function, we will use the dataframe we created in the previous
example and introduce missing values in it.

In [65]: df.iloc[4,2] = NA

In [66]: df
0ut[66]:

91

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

A B (@
-0.271131 0.084627 -1.707637
1.895796 0.590270 -0.505681
-0.628760 -1.623905 1.143701
0.005082 1.316706 -0.792742
.135748 -0.274006 NaN
1.068555 0.669145 0.128079
-0.783522 0.167165 -0.426007
0.498378 -0.950698 2.342104

~Nouvih WwWNRER O
o

In [70]: df.fillna (0)
Out[70]:
A B C
-0.271131 0.084627 -1.707637
1.895796 0.590270 -0.505681
-0.628760 -1.623905 1.143701
0.005082 1.316706 -0.792742
.135748 -0.274006 0.000000
1.068555 0.669145 0.128079
-0.783522 0.167165 -0.426007
0.498378 -0.950698 2.342104

~Nouviph WwWwN R O
o

Here we have substituted the missing value with a default value. We can use a variety of methods to
arrive at the substituting value (mean, median, and so on). We will see more methods of missing value
treatment (like imputation) in subsequent chapters.

Descriptive Statistics Functions

A general practice of dealing with datasets is to know as much about them as possible. Descriptive statistics
of a dataframe give data scientists a comprehensive look into important information about any attributes
and features in the dataset. Pandas packs a bunch of functions, which facilitate easy access to these statistics.

Consider the cities dataframe (city_data) that we consulted in the earlier section. We will use pandas
functions to gather some descriptive statistical information about the attributes of that dataframe. As we
only have three numeric columns in that particular dataframe, we will deal with a subset of the dataframe
which contains only those three values.

In [76]: columns _numeric = ['lat','lng','pop']
In [78]: city data[columns_numeric].mean()

Out[78]:
lat 20.662876
Ing 10.711914

pop 265463.071633
dtype: floaté4

In [79]: city_data[columns_numeric].sum()
Out[79]:

lat 1.512936e+05

Ing 7.843263e+04

pop 1.943721e+09

dtype: float64

92

CHAPTER 2

In [80]: city data[columns _numeric].count()

Out[80]:

lat 7322
Ing 7322
pop 7322

dtype: int64

In [81]: city data[columns_numeric].median()

Out[81]:
lat 26.792730
Ing 18.617509

pop 61322.750000
dtype: floaté4

In [83]: city data[columns numeric].quantile(0.8)

Out[83]:
lat 46.852480
Ing 89.900018

pop 269210.000000
dtype: floaté4

THE PYTHON MACHINE LEARNING ECOSYSTEM

All these operations were applied to each of the columns, the default behavior. We can also get all these
statistics for each row by using a different axis. This will give us the calculated statistics for each row in the

dataframe.

In [85]: city data[columns numeric].sum(axis = 1)
Out[85]:

3.095116e+03

1.509977e+04

2.016419e+05

4.994400e+04

1.009850e+04

B wWw NN R O

Pandas also provides us with another very handy function called describe. This function will calculate
the most important statistics for numerical data in one go so that we don’t have to use individual functions.

In [86]: city data[columns numeric].describe()
out[86]:

lat 1ng pop
count 7322.000000 7322.000000 7.322000e+03
mean 20.662876 10.711914 2.654631e+05
std 29.134818 79.044615 8.287622e+05
min -89.982894 -179.589979 -9.900000e+01
25% -0.324710 -64.788472 1.734425e+04
50% 26.792730 18.617509 6.132275e+04
75% 43.575448 73.103628 2.001726e+05
max 82.483323 179.383304 2.200630e+07

93

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

Concatenating Dataframes

Most Data Science projects will have data from more than one data source. These data sources will mostly
have data that’s related in some way to each other and the subsequent steps in data analysis will require
them to be concatenated or joined. Pandas provides a rich set of functions that allow us to merge different
data sources. We cover a small subset of such methods. In this section, we explore and learn about two
methods that can be used to perform all kinds of amalgamations of dataframes.

Concatenating Using the concat Method

The first method to concatenate different dataframes in pandas is by using the concat method. The majority
of the concatenation operations on dataframes will be possible by tweaking the parameters of the concat
method. Let’s look at a couple of examples to understand how the concat method works.

The simplest scenario of concatenating is when we have more than one fragment of the same dataframe
(which may happen if you are reading it from a stream or in chunks). In that case, we can just supply the
constituent dataframes to the concat function as follows.

In [25]: city datal = city data.sample(3)

In [26]: city data2 = city data.sample(3)

In [29]: city data combine = pd.concat([city datai,city data2])
In [30]: city data _combine

Out[30]:

city city ascii lat 1lng pop \

4255 Groningen Groningen 53.220407 6.580001 198941.0

5171 Tambov Tambov 52.730023 41.430019 296207.5

4204 Karibib Karibib -21.939003 15.852996 6898.0

4800 Focsani Focsani 45.696551 27.186547 92636.5

1183 Pleven Pleven 43.423769 24.613371 110445.5

7005 Indianapolis Indianapolis 39.749988 -86.170048 1104641.5

country iso2 iso3 province

4255 Netherlands NL NLD Groningen

5171 Russia RU RUS Tambov

4204 Namibia NaN NAM Erongo

4800 Romania RO ROU Vrancea

1183 Bulgaria BG BGR Pleven

7005 United States of America US USA Indiana

Another common scenario of concatenating is when we have information about the columns of same
dataframe split across different dataframes. Then we can use the concat method again to combine all the
dataframes. Consider the following example.

In [32]: df1 = pd.DataFrame({'col1': ['col10', 'coli1', 'coli2', 'coli3'],
"col2': ['col20', 'col21', 'col22', 'col23'],
'col3': ['col30', 'col31', 'col32', 'col33'],
'colq': ['colq0', 'col4a1', 'col42', 'col43']},

index=[0, 1, 2, 3])

94

In [33]
Out[33]

col1
0 colio
1 coli11
2 col12
3 coli13

In [34]:

In [é;j;

: df1

col2 col3 col4g
0120 col30 col4o
col21 col31 col41
col22 col32 col42
col23 col33 col43

out[37]:

col1
col10
coli11
col12
coli3
NaN
NaN

~N o wnN e O

col2 col3 col4
c0l20 col30 col4o0
col21 col31 col41
col22 col32 col42
col23 col33 col43

NaN NaN NaN

NaN NaN NaN

df4 = pd.DataFrame({'col2":

'Colq':
'col6':
index=[2,

pd.concat([df1,df4], axis=1)

Col4 col2
NaN NaN
NaN NaN

Col42 col22
Col43 col23
Col46 col26
Col47 col27

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

['col22', 'col23', 'col26', 'col27'],
['Cola2', 'Cola3', 'Col4a6', 'Cola7'],
['col62', 'col63', 'col6éb', 'col67']},
3, 6, 7])

col6
NaN
NaN
col62
col63
col66
col67

Database Style Concatenations Using the merge Command

The most familiar way to concatenate data (for those acquainted with relational databases) is using the
join operation provided by the databases. Pandas provides a database friendly set of join operations for
dataframes. These operations are optimized for high performance and are often the preferred method for
joining disparate dataframes.
Joining by columns: This is the most natural way of joining two dataframes. In this method, we have
two dataframes sharing a common column and we can join the two dataframes using that column. The
pandas library has a full range of join operations (inner, outer, left, right, etc.) and we will demonstrate
the use of inner join in this sub-section. You can easily figure out how to do the rest of join operations by
checking out the pandas documentation.
For this example, we will break our original cities data into two different dataframes, one having the
city information and the other having the country information. Then, we can join them using one of the
shared common columns.

In [51]:
In [52]:

Out[52]

In [53]:

¢ (223, 2)

Out[53]:

iso3 country

0 AFG Afghanistan
33 ALD Aland

34 ALB Albania

60 DZA Algeria

111 ASM

American Samoa

country data.head()

country data = city data[['iso3','country']].drop duplicates()
country data.shape

95

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

In [56]: del(city data['country'])

In [59]: city data.merge(country data, 'inner').head()
out[59]:

city city ascii lat 1lng pop iso2 iso3 \

0 Qal eh-ye Now Qal eh-ye 34.983000 63.133300 2997 AF AFG

1 Chaghcharan Chaghcharan 34.516701 65.250001 15000 AF AFG
2 Lashkar Gah Lashkar Gah 31.582998 64.360000 201546 AF AFG
3 Zaranj Zaranj 31.112001 61.886998 49851 AF AFG

4 Tarin Kowt Tarin Kowt 32.633298 65.866699 10000 AF AFG

province country

0 Badghis Afghanistan
1 Ghor Afghanistan

2 Hilmand Afghanistan
3 Nimroz Afghanistan
4 Uruzgan Afghanistan

Here we had a common column in both the dataframes, iso3, which the merge function was able to
pick up automatically. In case of the absence of such common names, we can provide the column names
to join on, by using the parameter on of the merge function. The merge function provides a rich set of
parameters that can be used to change its behavior as and when required. We will leave it on you to discover
more about the merge function by trying out a few examples.

Scikit-learn

Scikit-learn is one of the most important and indispensable Python frameworks for Data Science and
Machine Learning in Python. It implements a wide range of Machine Learning algorithms covering major
areas of Machine Learning like classification, clustering, regression, and so on. All the mainstream Machine
Learning algorithms like support vector machines, logistic regression, random forests, K-means clustering,
hierarchical clustering, and many many more, are implemented efficiently in this library. Perhaps this
library forms the foundation of applied and practical Machine Learning. Besides this, its easy-to-use API and
code design patterns have been widely adopted across other frameworks too!

The scikit-learn project was initiated as a Google summer of code project by David Cournapeau.
The first public release of the library was in late 2010. It is one of the most active Python projects and is
still under active development with new capabilities and existing enhancements being added constantly.
Scikit-learn is mostly written in Python but for providing a better performance some of the core code is
written in Cython. It also uses wrappers around popular implementations of learning algorithms like logistic
regression (using LIBLINEAR) and support vector machine (using LIBSVM).

In our introduction of scikit-learn we will first go through the basic design principles of the library
and then build on this theoretical knowledge of the package. We will implement some of the algorithms
on sample data to get you acquainted with the basic syntax. We leverage scikit-learn extensively in
subsequent chapters, so the intent here is to acquaint you with how the library is structured and its core
components.

96

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

Core APIs

Scikit-learnis an evolving and active project, as witnessed by its GitHub repository statistics. This
framework is built on quite a small and simple list of core API ideas and design patterns. In this section we

will briefly touch on the core APIs on which the central operations of scikit-learn are based.

Dataset representation: The data representation of most Machine Learning tasks
are quite similar to each other. Very often we will have a collection of data points
represented by a stacking of data point vectors. Basically considering a dataset,

each row in the dataset represents a vector for a specific data point observation. A
data point vector contains multiple independent variables (or features) and one or
more dependent variables (response variables). For example, if we have a linear
regression problem which can be represented as [(X, X,, X, X,, ..., X), (¥)] where
the independent variables (features) are represented by the Xs and the dependent
variable (response variable) is represented by Y. The idea is to predict Y by fitting
amodel on the features This data representation resembles a matrix (considering
multiple data point vectors), and a natural way to depict it is by using numpy arrays.
This choice of data representation is quite simple yet powerful as we are able to
access the powerful functionalities and the efficient nature of vectorized numpy array
operations. In fact recent updates of scikit-learn even accept pandas dataframes as
inputs instead of explicitly needing you to convert them to feature arrays!

Estimators: The estimator interface is one of the most important components of
the scikit-1learn library. All the Machine Learning algorithms in the package
implement the estimator interface. The learning process is handled in a two-step
process. The first step is the initialization of the estimator object; this involves
selecting the appropriate class object for the algorithm and supplying the parameters
or hyperparameters for it. The second step is applying the fit function to the

data supplied (feature set and response variables). The fit function will learn the
output parameters of the Machine Learning algorithm and expose them as public
attributes of the object for easy inspection of the final model. The data to the fit
function is generally supplied in the form of an input-output matrix pair. In addition
to the Machine Learning algorithms, several data transformation mechanisms are
also implemented using the estimators APIs (for example, scaling of features, PCA,
etc.). This allows for simple data transformation and a simple mechanism to expose
transformation mechanisms in a consistent way.

Predictors: The predictor interface is implemented to generate predictions,
forecasts, etc. using a learned estimator for unknown data. For example, in the case
of a supervised learning problem, the predictor interface will provide predicted
classes for the unknown test array supplied to it. Predictor interface also contains
support for providing quantified values of the output it supplies. A requirement of a
predictor implementation is to provide a score function; this function will provide
a scalar value for the test input provided to it which will quantify the effectiveness
of the model used. Such values will be used in the future for tuning our Machine
Learning models.

97

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

e Transformers: Transformation of input data before learning of a model is a very
common task in Machine Learning. Some data transformations are simple, for
example replacing some missing data with a constant, taking a log transform,
while some data transformations are similar to learning algorithms themselves
(for example, PCA). To simplify the task of such transformations, some estimator
objects will implement the transformer interface. This interface allows us to perform
a non-trivial transformation on the input data and supply the output to our actual
learning algorithm. Since the transformer object will retain the estimator used for
transformation, it becomes very easy to apply the same transformation to unknown
test data using the transform function.

Advanced APIs

In the earlier section we saw some of the most basic tenets of the scikit-learn package. In this section we
will briefly touch on the advanced constructs that are built on those basics. These advanced set of APIs will
often help data scientists in expressing a complex set of essential operations using a simple and stream-lined
syntax.

e Meta estimators: The meta estimator interface (implemented using the multiclass
interface) is a collection of estimators which can be composed by accumulating
simple binary classifiers. It allows us to extend the binary classifiers to implement
multi-class, multi-label, multi-regression, and multi-class-multi-label classifications.
This interface is important as these scenarios are common in modern day
Machine Learning and the capability to implement this out-of-the-box reduces the
programming requirements for data scientists. We should also remember that most
binary estimators in the scikit-1learn library have multiclass capabilities built in
and we won't be using the meta-estimators unless we need custom behavior.

e Pipeline and feature unions: The steps of Machine Learning are mostly sequential
in nature. We will read in the data, apply some simple or complex transformations,
fit an appropriate model, and predict using the model for unseen data. Another
hallmark of the Machine Learning process is the iteration of these steps multiple
times due to its iterative nature, to arrive at the best possible model and then deploy
the same. It is convenient to chain these operations together and repeat them as a
single unit instead of applying operations piecemeal. This concept is also known
as Machine Learning pipelines. Scikit-1learn provides a Pipeline API to achieve
similar purpose. A Pipeline() object from the pipeline module can chain multiple
estimators together (transformations, modeling, etc.) and the resultant object can
be used as an estimator itself. In addition to the pipeline API, which applies these
estimators in a sequential method, we also have access to a FeatureUnion API, which
will perform a specified set of operation in parallel and show the output of all the
parallel operations. The use of pipelines is a fairly advanced topic and it will be made
clearer, when we specifically see an example in the subsequent chapters.

98

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

e Model tuning and selection: Each learning algorithm will have a bunch of
parameters or hyperparameters associated with it. The iterative process of Machine
Learning aims at finding the best set of parameters that give us the model having the
best performance. For example, the process of tuning various hyperparameters of a
random forest algorithm, to find the set which gives the best prediction accuracy (or
any other performance metric). This process sometimes involves traversing through
the parameter space, searching for the best parameter set. Do note that even though
we mention the term parameter here, we typically indicate the hyperparameters of
amodel. Scikit-1learn provides useful APIs that help us navigate this parameter
space easily to find the best possible parameter combinations. We can use two meta-
estimators—GridSearchCV and RandomizedSearchCV—for facilitating the search of
the best parameters. GridSearchCV, as the name suggests, involves providing a grid
of possible parameters and trying each possible combination among them to arrive
at the best one. An optimized approach often is to use a random search through
the possible parameter set; this approach is provided by the RandomizedSearchCV
API. It samples the parameters and avoids the combinatorial explosions that can
result in the case of a higher number of parameters. In addition to the parameter
search, these model selection methods also allow us to use different cross-validation
schemes and score functions to measure performance.

Scikit-learn Example: Regression Models

In the first chapter, we discussed an example which involved the task of classification. In this section, we will
tackle another interesting Machine Learning problem, that of regression. Keep in mind the focus here is to
introduce you to the basic steps involved in using some of the scikit-1learn library APIs. We will not try to
over-engineer our solution to arrive at the best model. Future chapters will focus on those aspects with real-
world datasets.

For our regression example, we will use one of the datasets bundled with the scikit-learn library, the
diabetes dataset.

The Dataset

The diabetes dataset is one of the bundled datasets with the scikit-learn library. This small dataset allows
the new users of the library to learn and experiment various Machine Learning concepts, with a well-known
dataset. It contains observations of 10 baseline variables, age, sex, body mass index, average blood pressure.
and six blood serum measurements for 442 diabetes patients. The dataset bundled with the package is
already standardized (scaled), i.e. they have zero mean and unit L2 norm. The response (or target variable)
is a quantitative measure of disease progression one year after baseline. The dataset can be used to answer
two questions:

o What is the baseline prediction of disease progression for future patients?

e Which independent variables (features) are important factors for predicting disease
progression?

We will try to answer the first question here by building a simple linear regression model. Let’s get
started by loading the data.

In [60]: from sklearn import datasets

In [61]: diabetes = datasets.load diabetes()
In [63]: y = diabetes.target
In [66]: X = diabetes.data

99

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

In [67]: X.shape
Out[67]: (442L, 10L)

In [68]: X[:5]
Out[68]:
array([[0.03807591, 0.05068012, 0.06169621, 0.02187235, -0.0442235 ,
-0.03482076, -0.04340085, -0.00259226, 0.01990842, -0.01764613],
[-0.00188202, -0.04464164, -0.05147406, -0.02632783, -0.00844872,
-0.01916334, 0.07441156, -0.03949338, -0.06832974, -0.09220405],
[0.08529891, 0.05068012, 0.04445121, -0.00567061, -0.04559945,
-0.03419447, -0.03235593, -0.00259226, 0.00286377, -0.02593034],
[-0.08906294, -0.04464164, -0.01159501, -0.03665645, 0.01219057,
0.02499059, -0.03603757, 0.03430886, 0.02269202, -0.00936191],
[0.00538306, -0.04464164, -0.03638469, 0.02187235, 0.00393485,
0.01559614, 0.00814208, -0.00259226, -0.03199144, -0.04664087])
In [69]: y[:10]
Out[69]: array([151., 75., 141., 206., 135., 97., 138., 63., 110., 310.])

Since we are using the data in the form of numpy arrays, we don’t get the name of the features in the data
itself. But we will keep the reference to the variable names as they may be needed later in our process or just
for future reference.

In [78]: feature names=['age', 'sex', 'bmi', 'bp',
. ls1|, ISZI, ls3|, Is4l, l55|, .56']

For prediction of the response variable here, we will learn a Lasso model. A Lasso model is an extension
of the normal linear regression model which allows us to apply L1 regularization to the model. Simply put, a
lasso regression will try to minimize the number of independent variables in the final model. This will give
us the model with the most important variables only (feature selection).

In [2]: from sklearn import datasets
: from sklearn.linear model import Lasso
..: import numpy as np
..: from sklearn import linear_model, datasets
: from sklearn.model selection import GridSearchCV

We will split our data into separate test and train sets of data (train is used to train the model and
test is used for model performance testing and evaluation).

In [3]: diabetes = datasets.load diabetes()
...t X _train = diabetes.data[:310]
1y train = diabetes.target[:310]

...t X_test = diabetes.data[310:]
..: y test = diabetes.data[310:]

100

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

Then we will define the model we want to use and the parameter space for one of the model’s
hyperparameters. Here we will search the parameter alpha of the Lasso model. This parameter basically
controls the strictness our regularization.

In [4]: lasso = Lasso(random_state=0)
..: alphas = np.logspace(-4, -0.5, 30)

Then we will initialize an estimator that will identify the model to be used. Here we notice that the
process is identical for both learning a single model and a grid search of models, i.e. they both are objects of
the estimator class.

In [9]: estimator = GridSearchCV(lasso, dict(alpha=alphas))

In [10]: estimator.fit(X_train, y train)
Out[10]:
GridSearchCV(cv=None, error score='raise',
estimator=Lasso(alpha=1.0, copy X=True, fit intercept=True, max_iter=1000,
normalize=False, positive=False, precompute=False, random state=0,
selection="cyclic', tol=0.0001, warm start=False),
fit params={}, iid=True, n_jobs=1,
param_grid={'alpha': array([1.00000e-04, 1.32035e-04, 1.74333e-04, 2.30181e-04,
3.03920e-04, ..., 2.39503e-01, 3.16228e-01])},
pre_dispatch="2*n_jobs', refit=True, return_train_score=True, scoring=None,
verbose=0)

This will take our train set and learn a group of Lasso models by varying the value of the alpha
hyperparameter. The GridSearchCV object will also score the models that we are learning and we can us the
best_estimator_attribute to identify the model and the optimal value of the hyperparameter that gave us
the best score. Also we can directly use the same object for predicting with the best model on unknown data.

In [12]: estimator.best score
Out[12]: 0.46540637590235312

In [13]: estimator.best estimator

Out[13]:

Lasso(alpha=0.025929437974046669, copy X=True, fit intercept=True, max_iter=1000,
normalize=False, positive=False, precompute=False, random_state=0, selection='cyclic',
t01=0.0001, warm_start=False)

In [18]: estimator.predict(X test)

Out[18]:

array([203.42104984, 177.6595529 , 122.62188598, 212.81136958, 173.61633075, 114.76145025,
202.36033584, 171.70767813, 164.28694562, 191.29091477, 191.41279009, 288.2772433,
296.47009002, 234.53378413, 210.61427168, 228.62812055,...])

The next steps involve reiterating the whole process making changes to the data transformation,
Machine Learning algorithm, tuning hyperparameters of the algorithm etc., but the basic steps will remain
the same. We will go into the elaborate details of these processes in future chapters of the book. Here we will
conclude our introduction to the scikit-learn framework and encourage you to check out their extensive
documentation at http://scikit-learn.org/stable, which points to the home page of the most current
stable version of scikit-learn.

101

http://scikit-learn.org/stable

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

Neural Networks and Deep Learning

Deep learning has become one of the most well-known representations of Machine Learning in the recent
years. Deep Learning applications have achieved remarkable accuracy and popularity in various fields
especially in image and audio related domains. Python is the language of choice when it comes to learning
deep networks and complex representations of data. In this section, we briefly discuss ANNs (Artificial
Neural Networks) and Deep Learning networks. Then we will move on to the popular Deep Learning
frameworks for Python. Since, the mathematics involved behind ANNs is quite advanced we will keep our
introduction minimal and focused on the practical aspects of learning a neural network. We recommend
you check out some standard literature on the theoretical aspects of Deep Learning and neural networks like
Deep Learning by Goodfellow and Bengio, if you are more interested in its internal implementations. The
following section gives a brief refresher on neural networks and Deep Learning based on what we covered in
detail in Chapter 1.

Artificial Neural Networks

Deep learning can be considered as an extension of Artificial Neural Networks (ANNs) . Neural networks
were first introduced as a method of learning by Frank Rosenblatt in 1958, although the learning model
called perceptron was different from modern day neural networks, we can still regard the perceptron as the
first artificial neural network.

Artificial neural networks loosely work on the principle of learning a distributed distribution of data.
The underlying assumption is that the generated data is a result of nonlinear combination of a set of latent
factors and if we are able to learn this distributed representation then we can make accurate predictions
about a new set of unknown data. The simplest neural network will have an input layer, a hidden layer (a
result of applying a nonlinear transformation to the input data), and an output layer. The parameters of the
ANN model are the weights of each connection that exist in the network and sometimes a bias parameter.
This simple neural network is represented as shown in Figure 2-6.

102

http://dx.doi.org/10.1007/978-1-4842-3207-1_1

Layer

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

Output

Hidden
Layer

Figure 2-6. A simple neural network

This network is having an input vector of size 3, a hidden layer of size 4, and a binary output layer. The
process of learning an ANN will involve the following steps.

1.

Define the structure or architecture of the network we want to use. This is critical
as if we choose a very extensive network containing a lot of neurons/units (each
circle in Figure 2-6 can be labeled as neuron or a unit) then we can overfit our
training data and our model won't generalize well.

Choose the nonlinear transformation to be applied to each connection. This
transformation controls the activeness of each neuron in the network.

103

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

3. Decide on a loss function we will use for the output layer. This is applicable in the
case when we have a supervised learning problem, i.e. we have an output label
associated with each of the input data points.

4. Learning the parameters of the neural network, i.e. determine the values of each
connection weight. Each arrow in Figure 2-6 carries a connection weight. We
will learn these weights by optimizing our loss function using some optimization
algorithm and a method called backpropagation.

We will not go into the details of backpropagation here, as it is beyond the scope of the present chapter.
We will extend these topics when we actually use neural networks.

Deep Neural Networks

Deep neural networks are an extension of normal artificial neural networks. There are two major differences
that deep neural networks have, as compared to normal neural networks.

Number of Layers

Normal neural networks are shallow, which means that they will have at max one or two hidden layers.
Whereas the major difference in deep neural networks is that they have a lot more hidden layers. And this
number is usually very large. For example, the Google brain project used a neural network that had millions
of neurons.

Diverse Architectures

Based on what we discussed in Chapter 1, we have a wide variety of deep neural network architectures
ranging from DNNs, CNNs, RNNs, and LSTMs. Recent research have even given us attention based networks
to place special emphasis on specific parts of a deep neural network. Hence with Deep Learning, we have
definitely gone past the traditional ANN architecture.

Computation Power

The larger the network and the more layers it has, the more complex the network becomes and training
it takes a lot of time and resources. Deep neural networks work best on GPU based architectures and
take far less time to train than on traditional CPUs, although recent improvements have vastly decreased
training times.

Python Libraries for Deep Learning

Python is a language of choice, across both academia and enterprises, to develop and use normal/deep
neural networks. We will learn about two packages— Theano and TensorFlow—which will allow us to build
neural network based models on datasets. In addition to these we will learn to use Keras, which is a high
level interface to building neural networks easily and has a concise AP], capable of running on top of both
TensorFlow and Theano. Besides these, there are some more excellent frameworks For Deep Learning. We
also recommend you to check out PyTorch, MXNet, Caffe (recently Caffe2 was released), and Lasagne.

104

http://dx.doi.org/10.1007/978-1-4842-3207-1_1

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

Theano

The first library popularly used for learning neural networks is Theano. Although by itself, Theano is not a
traditional Machine Learning or a neural network learning framework, what it provides is a powerful set of
constructs that can be used to train both normal Machine Learning models and neural networks. Theano
allows us to symbolically define mathematical functions and automatically derive their gradient expression.
This is one of the frequently used steps in learning any Machine Learning model. Using Theano, we can
express our learning process with normal symbolic expressions and then Theano can generate optimized
functions that carry out those steps.

Training of Machine Learning models is a computationally intensive process. Especially neural networks
have steep computational requirements due to both the number of learning steps involved and the non-linearity
involved in them. This problem is increased manifold when we decide to learn a deep neural network. One of
the important reasons of Theano being important for neural network learning is due to its capability to generate
code which executes seamlessly on both CPUs and GPUs. Thus if we specify our Machine Learning models
using Theano, we are also able to get the speed advantage offered by modern day GPUs.

In the rest of this section, we see how we can install Theano and learn a very simple neural network
using the expressions provided by Theano.

Installation

Theano can be easily installed by using the Python package manager pip or conda.
pip install theano

Often the pip installer fails on Windows, hence we recommend using conda install theano on the
Windows platform. We can verify the installation by importing our newly installed package in a Python shell.

In [1]: import theano

If you get no errors, then this indicates you have successfully installed the theano library in your system.

Theano Basics (Barebones Version)

In this section, we discuss some basics of the symbolic abilities offered by theano and how those can be
leveraged to build some simple learning models. We will not directly use theano to build a neural network in
this section, but you will know how to carry out symbolic operations in theano. Besides this, you will see in the
coming section that building neural networks is much easier when we use a higher level library such as keras.

Theano expresses symbolical expressions using something called tensors. A tensor in its simplest
definition is a multi-dimensional array. So a zero-order tensor array is a scalar, a one-order tensor is a vector,
and a two-order tensor is a matrix.

Now we look at how we can work on a zero-order tensor or a scalar by using constructs provided by theano.

In [3]: import numpy
...t import theano.tensor as T
: from theano import function

. x = T.dscalar('x")
...ty = T.dscalar('y")
el Z=X4Y
.t f = function([x, y], z)
1 (8, 2)

Out[3]: array(10.0)

105

CHAPTER 2 * THE PYTHON MACHINE LEARNING ECOSYSTEM

Here, we defined a symbolical operation (denoted by the symbol z) and then bound the input and the
operations in a function. This was achieved by using the function construct provided by theano. Contrast it
with the normal programming paradigm and we would need to define the whole function by ourselves. This
is one of the most powerful aspects of using a symbolical mathematical package like theano. Using construct
similar to these, we can define a complex set of operations.

Graph structure: Theano represents symbolical mathematical operations as graphs. So when we
define an operation like z, as depicted in the earlier example, no calculation happens instead what we get is
a graph representation of the expression. These graphs are made up of Apply, Op, and variable nodes. The
Apply node represents application of some op on some set of variable nodes. So if we wanted to visualize the
operation we defined in the preceding step as a graph, it would look like the depiction in Figure 2-7. (Source:
http://deeplearning.net/software/theano/extending/graphstructures.html.)

None None

owner

inputs

outputs

Arrows represent references to the Python objects pointed at. The blue box is an Apply node. Red
boxes are Variable nodes. Green circles are Ops. Purple boxes are Types.

Figure 2-7. Graph structure of Theano operation

Theano has various low-level tensor APIs for building neural network architectures using Tensor
arithmetic and Ops. This is available in the theano.tensor.nnet module and you can check out relevant
functions at http://deeplearning.net/software/theano/library/tensor/nnet/index.html, which
include conv for convolutional neural networks and nnet for regular neural network operations. This
concludes our basic introduction to theano. We kept it simple because we will rarely be using theano directly
and instead rely on high-level libraries like keras to build powerful deep neural networks with minimal code
and focus more on solving problems efficiently and effectively.

106

http://deeplearning.net/software/theano/extending/graphstructures.html
http://deeplearning.net/software/theano/library/tensor/nnet/index.html

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

Tensorflow

Tensorflow is an open source software library for Machine Learning released by Google in November 2015.
Tensorflow is based on the internal system that Google uses to power its research and production systems.
Tensorflow is quite similar to Theano and can be considered as Google’s attempt to provide an upgrade to
Theano by providing easy-to-use interfaces into Deep Learning, neural networks, and Machine Learning
with a strong focus on rapid prototyping and model deployment constructs. Like Theano it also provides
constructs for symbolical mathematics, which are then translated into computational graphs. These graphs
are then compiled into lower-level code and executed efficiently. Like theano, tensorflow also supports
CPUs and GPUs seamlessly. In fact tensorflow works best on a TPU, known as the Tensor Processing Unit,
which was invented by Google. In addition to having a Python API, tensorflow is also exposed by APIs to
C++, Haskell, Java, and Go languages. One of the major differences tensorflow has as compared to
theano is the support for higher-level operations, which ease the process of Machine Learning and
its focus on model development as well as deployment to production and model serving via multiple
mechanisms (https://www.tensorflow.org/serving/serving basic). Also the documentation and usage
of theano is not so intuitive to use, which is another area tensorflow aims to fill, by its easy-to-understand
implementations and extensive documentation.

The constructs provided by tensorflow are quite similar to those of Theano so we will not be reiterating
those. You can always refer to the documentation provided for tensorflowat https://www.tensorflow.org/
for more details.

Installation

Tensorflow works well on Linux and Mac systems, but was not directly available on Windows due to internal
dependencies on Bazel. The good news is that it was recently successfully launched for Windows platforms
too. It requires a minimum of Python 3.5 for its execution. The library can be installed by using pip or by
using conda install function. Note that for successful installation of Tensorflow, we will also require
updated dask and pandas libraries on our system.

conda install tensorflow

Once we have installed the library, we can verify a successful install by verifying it in the ipython
console with the following commands.

In [21]: import tensorflow as tf
...: hello = tf.constant('Hello, TensorFlow!")
...: sess = tf.Session()
: print(sess.run(hello))

<A bunch of warning messages>
b'Hello, TensorFlow!'

The message verifies our successful install of the tensorflow library. You are also likely to see a bunch
of warning messages but you can safely ignore them. The reason for those messages is the fact that the

default tensorflow build is not built with support for some instruction sets, which may slow down the
process of learning a bit.

107

https://www.tensorflow.org/serving/serving_basic
https://www.tensorflow.org/

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

Keras

Keras is a high-level Deep Learning framework for Python, which is capable of running on top of both
Theano and Tensorflow. Developed by Francois Chollet, the most important advantage of using Keras is the
time saved by its easy-to-use but powerful high level APIs that enable rapid prototyping for an idea. Keras
allows us to use the constructs offered by Tensorflow and Theano in a much more intuitive and easy-to-use
way without writing excess boilerplate code for building neural network based models. This ease of flexibility
and simplicity is the major reason for popularity of keras. In addition to providing an easy access to both

of these somewhat esoteric libraries, keras ensures that we are still able to take the advantages that these
libraries offer. In this section, you learn how to install Keras, learn about the basics of model development
using Keras, and then learn how to develop an example neural network model using keras and tensorflow.

Installation

Keras is easy to install using the familiar pip or conda command. We will assume that we have both
tensorflow and theano installed, as they will be required to be used as backend for keras model
development.

conda install keras

We can check for the successful installation of keras in our environment by importing it in IPython.
Upon a successful import it will display the current backend, which is usually theano by default. So you need
to go to the keras. json file, available under the . keras directory under your user account directory. Our
config file contents are as follows.

{"epsilon": 1e-07, "floatx": "float32",
"backend": "tensorflow", "image data format": "channels last"}

You can refer to https://keras. io/backend/, which tells you how easily you can switch the backend in
keras from theano to tensorflow. Once the backend in specified in the config file, on importing keras, you
should see the following message in your ipython shell.

In [22]: import keras
Using TensorFlow backend

Keras Basics

The main abstraction for a neural network is a model in keras. A model is a collection of neurons that will
define the structure of a neural network. There are two different types of models:

e Sequential model: Sequential models are just stacks of layers. These layers can
together define a neural network. If you refer back to Figure 2-6 when we introduced
neural networks, that network can be defined by specifying three layers in a sequential
keras model. We will see an example of a sequential model later in this section.

e Functional API Model: Sequential models are very useful but sometimes our
requirement will exceed the constructs possible using sequential models. This is
where the function model APIs will come in to the picture. This API allows us to
specify complex networks i.e., networks that can have multiple outputs, networks
with shared layers, etc. These kinds of models are needed when we need to use
advanced neural networks like convolutional neural networks or recurrent neural
networks.

108

https://keras.io/backend/

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

Model Building

The model building process with keras is a three-step process. The first step is specifying the structure of the
model. This is done by configuring the base model that we want to use, which is either a sequential model or
a functional model. Once we have identified a base model for our problem we will further enrich that model
by adding layers to the model. We will start with the input layer, to which we will feed our input data feature
vectors. The subsequent layers to be added to the model are based on requirements of the model. keras
provides a bunch of layers which can be added to the model (hidden layers, fully connected, CNN, LSTM,
RNN, and so on), we will describe some of them while running through our neural network example. We can
stack these layers together in a complex manner and add the final output layer, to arrive at our overall model
architecture.

The next step in the model learning process is the compilation of the model architecture that we
defined in the first step. Based on what we learned in the preceding sections on Theano and Tensorflow,
most of the model building steps are symbolic and the actual learning is deferred until later. In the
compilation step, we configure the learning process. The learning process, in addition to the structure of the
model, needs to specify the following additional three important parameters:

e Optimizer: We learned in the first chapter that the simplest explanation of a learning
process is the optimization of a loss function. Once we have the model and the loss
function, we can specify the optimizer that will identify the actual optimization
algorithm or program we will use, to train the model and minimize the loss or error.
This could be a string identifier to the already implemented optimizers, a function,
or an object to the Optimizer class that we can implement.

¢ Loss function: A loss function, also known as an objective function, will specify the
objective of minimizing loss/error, which our model will leverage to get the best
performance over multiple epochs\iterations. It again can be a string identifier to
some pre-implemented loss functions like cross-entropy loss (classification) or mean
squared error (regression) or it can be a custom loss function that we can develop.

¢ Performance metrics: A metric is a quantifiable measure of the learning process.
While compiling a model, we can specify a performance metric we want to track
(for example, accuracy for a classification model), which will educate us about the
effectiveness of the learning process. This helps in evaluating model performance.

The last step in the model building process is executing the compiled method to start the training
process. This will execute the lower level compiled code to find out the necessary parameters and weights of
our model during the training process. In keras, like scikit-learn, it is achieved by calling the fit function
on our model. We can control the behavior of the function by supplying appropriate arguments. You can
learn about these arguments at https://keras.io/models/sequential/.

Learning an Example Neural Network

We will conclude this section by building a simple working neural network model on one of the datasets that
comes bundled with the scikit-learn package. We will use the tensorflow backend in our example, but
you can try to use a theano backend and verify the execution of model on both the backends.

For our example, we will use the Wisconsin Breast Cancer dataset, which is bundled with the
scikit-learn library. The dataset contains attribute drawn from a digitized image of fine needle aspirate
of a breast mass. They describe characteristics of the cell nuclei present in the image. On the basis of those
attributes, the mass can be marked as malignant or benign. The goal of our classification system is to predict
thatlevel. So let’s get started by loading the dataset.

109

https://keras.io/models/sequential/

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

In [33]: from sklearn.datasets import load breast cancer
: cancer = load breast cancer()

...t X_train = cancer.data[:340]
...t y train = cancer.target[:340]

¢ X _test

. cancer.data[340:]
:y_test

cancer.target[340:]

The next step of the process is to define the model architecture using the keras model class. We see that
our input vector is having 30 attributes so we will have a shallow network having one hidden layer of half
the units (neurons), i.e., we will have 15 units in the hidden layer. We add a one unit output layer to predict
either 1 or 0 based on whether the input data point is benign or malignant. This is a simple neural network
and doesn’t involve Deep Learning.

In [39]: import numpy as np
...: from keras.models import Sequential
: from keras.layers import Dense, Dropout

In [40]: model = Sequential()
...: model.add(Dense(15, input dim=30, activation='relu'))
...: model.add(Dense(1, activation="sigmoid'))

Here we have defined a sequential keras model, which is having a dense hidden layer of 15 units.
The dense layer means a fully connected layer so it means that each of those 15 units (neurons) is fully
connected to the 30 input features. The output layer for our example is a dense layer with the sigmoid
activation. The sigmoid activation is used to convert a real valued input into a binary output (1 or 0). Once
we have defined the model we will then compile the model by supplying the necessary optimizer, loss
function, and the metric on which we want to evaluate the model performance.

In [41]: model.compile(loss="binary crossentropy', optimizer='rmsprop', metrics=['accuracy'])
Here we used a loss function of binary crossentropy, which is a standard loss function for binary
classification problems. For the optimizer, we used rmsprop, which is an upgrade from the normal gradient

descent algorithm. The next step is to fit the model using the fit function.

In [41]: model.fit(X_train, y train, epochs=20, batch size=50)

Epoch 1/20
340/340 [==============================] - 0s - loss: 7.3616 - acc: 0.5382
Epoch 2/20
340/340 [==============================] - 0S - 10SS: 7.3616 - acc: 0.5382

Epoch 19/20

340/340 [==============================] - 0s - loss: 7.3616 - acc: 0.5382
Epoch 20/20
340/340 [==============================] - 0S - 10SS: 7.3616 - acc: 0.5382

Here, the epochs parameter indicates one complete forward and backward pass of all the training
examples. The batch_size parameter indicates the total number of samples which are propagated through
the NN model at a time for one backward and forward pass for training the model and updating the gradient.

110

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

Thus if you have 100 observations and your batch size is 10, each epoch will consist of 10 iterations where 10
observations (data points) will be passed through the network at a time and the weights on the hidden layer
units will be updated. However we can see that the overall loss and training accuracy remains the same.
Which means the model isn’t really learning anything from the looks of it!

The API for keras again follows the convention for scikit-1learn models, hence we can use the predict
function to predict for the data points in the test set. In fact we use predict_classes to get the actual class
label predicted for each test data instance.

In [43]: predictions = model.predict classes(X test)
128/229 [===============>..............] - ETA: Os

Let’s evaluate the model performance by looking at the test data accuracy and other performance
metrics like precision, recall, and F1 score. Do not despair if you do not understand some of these terms, as
we will be covering them in detail in Chapter 5. For now, you should know that scores closer to 1 indicate
better results i.e., an accuracy of 1 would indicate 100% model accuracy, which is perfection. Luckily,
scikit-learn provides us with necessary performance metric measuring APIs.

In [44]: from sklearn import metrics
...t print('Accuracy:', metrics.accuracy score(y true=y test, y pred=predictions))
...t print(metrics.classification report(y true=y test, y pred=predictions))score
Accuracy: 0.759825327511
precision recall fi-score support

0 0.00 0.00 0.00 55
1 0.76 1.00 0.86 174
avg / total 0.58 0.76 0.66 229

From the previous performance metrics, we can see that even though model accuracy is 76%, for data
points having cancer (malignant) i.e., label 0, it misclassifies them as 1 (55 instances) and remaining 174
instances where class label is 1 (benign), it classifies them perfectly. Thus this model hasn’t learned much
and predicts every response as benign (label 1). Can we do better than this?

The Power of Deep Learning

The idea of Deep Learning is to use multiple hidden layers to learn latent and complex data patterns,
relationships, and representations to build a model that learns and generalizes well on the underlying
data. Let’s take the previous example and convert it to a fully connected deep neural network (DNN)
by introducing two more hidden layers. The following snippet builds and trains a DNN with the same
configuration as our previous experiment only with the addition of two new hidden layers.

In [45]: model = Sequential()
...: model.add(Dense(15, input dim=30, activation='relu'))
: model.add(Dense(15, activation="relu'))
: model.add(Dense(15, activation='relu'))
: model.add(Dense(1, activation='sigmoid"'))

..: model.compile(loss="binary crossentropy',
optimizer="rmsprop',
metrics=["accuracy'])

: model.fit(X train, y train,

111

http://dx.doi.org/10.1007/978-1-4842-3207-1_5

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

epochs=20,
batch_size=50)

Epoch 1/20

340/340 [==============================] - 0s - 10SS: 3.3799 - acc: 0.3941
Epoch 2/20
340/340 [==============================] - 0s - loss: 1.3740 - acc: 0.6059
Epoch 3720
340/340 [==================—===========] - 0s - loss: 0.4258 - acc: 0.8471
Epoch 19/20
340/340 [==============================] - 0s - loss: 0.2361 - acc: 0.9235
Epoch 20/20
340/340 [==============================] - 0s - 1o0ss: 0.3154 - acc: 0.9000

We see a remarkable jump in the training accuracy and a drop in the loss based on the preceding
training output. This is indeed excellent and seems promising! Let’s check out our model performance on
the test data now.

In [46]: predictions = model.predict classes(X test)
...t print('Accuracy:', metrics.accuracy score(y true=y test, y pred=predictions))
...t print(metrics.classification report(y true=y test, y pred=predictions))score
Accuracy: 0.912663755459
precision recall fi-score support

0 0.78 0.89 0.83 55
1 0.96 0.92 0.94 174
avg / total 0.92 0.91 0.91 229

We achieve an overall accuracy and F1 score of 91% and we can see that we also have an F1 score of 83%
as compared to 0% from the previous model, for class label 0 (malignant). Thus you can clearly get a feel of
the power of Deep Learning, which is evident by just introducing more hidden layers in our network, which
enabled our model to learn better representations of our data. Try experimenting with other architectures or
even introducing regularization aspects like dropout.

Thus, in this section, you learned about some of the important frameworks relevant to neural networks
and Deep Learning. We will revisit the more advanced aspects of these frameworks in subsequent chapters
when we work on real-world case studies.

Text Analytics and Natural Language Processing

In the sections till now we have mostly dealt with structured data formats and datasets i.e., data in which
we have the observations occurring as rows and the features or attributes for each of those observations
occurring as columns. This format is most convenient for Machine Learning algorithms but the problem is
that raw data is not always available in this easy-to-interpret format. This is the case with unstructured data
formats like audio, video, textual datasets. In this section, we try to get a brief overview of the frameworks
we can use to solve this problem if the data that we are working with is unstructured text data. We will not
go into detailed examples of using these frameworks and if you are interested, we recommend checking out
Chapter 7 of this book, which deals with a real-world case study on analyzing text data.

112

http://dx.doi.org/10.1007/978-1-4842-3207-1_7

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

The Natural Language Tool Kit

Perhaps the most important library of Python to work with text data is NLTK or the Natural Language Tool
Kit. This section introduce NLTK and its important modules. We go over the installation procedure of the
library and a brief description of its important modules.

Installation and Introduction

The nltk package can be installed in the same way as most of the other packages used in this book, which is
by using the pip or conda command.

conda install nltk
We can verify the installation by importing the package in an IPython/Python shell.
In [1]: import nltk

There’s an important difference for the nltk library as compared to other standard libraries. In case of
other libraries, in general, we don’t need to download any auxiliary data. But for the nltk library to work
to its full potential, we would require some auxiliary data, which are mostly various corpora. This data is
leveraged by multiple functions and modules in the library. We can download this data by executing the
following command in the Python shell.

In [5]: nltk.download()

This command will give us the screen shown in Figure 2-8, where we can select the additional data
we want to install and select the installation location. We will select to install all the additional data and
packages available.

| NLTK Downloader - [m] X
File View Sort Help

Models Q All Packages

Status

out of date

Size

nfa

All packages

all-corpora All the corpora nia out of date
all-nitk All packages available on nitk_data gh-pages branch n/a out of date
bock Everything used in the NLTK Bock nfa out of date
popular Popular packages nfa not installed
third-party Third-party data packages n/a not installed

-
Cancel Refresh

Serverindex https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/index.xml
Download Directory: C: \nltk_data

Figure 2-8. nltk download option

113

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

You can also choose to download all necessary datasets without the GUI by using the following
command from the ipython or Python shell.

nltk.download('all', halt on_error=False)

Once the download is finished we will be able to use all the necessary functionalities and the bundled
data of the nltk package. We will now take a look at the major modules of n1tk library and introduce the
functionality that each of them provides.

Corpora

The starting point of any text analytics process is the process of collecting the documents of interest in

a single dataset. This dataset is central to the next steps of processing and analysis. This collection of
documents is generally called a corpus. Multiple corpus datasets are called corpora. The nltk module
nltk.corpus provides necessary functions that can be used to read corpus files in a variety of formats. It
supports the reading of corpora from the datasets bundled in n1tk package as well as external corpora.

Tokenization

Tokenization is one of the core steps in text pre-processing and normalization. Each text document

has several components like paragraphs, sentences, and words that together make up the document.

The process of tokenization is used to break down the document into these smaller components. This
tokenization can be into sentences, words, clauses, and so on. The most popular way to tokenize any
document is by using sentence tokenization and\or word tokenization. The nltk.tokenize module of the
nltk library provides functionality that enables efficient tokenization of any textual data.

Tagging

A text document is constructed based on various grammatical rules and constructs. The grammar depends
on the language of the text document. Each language’s grammar will contain different entities and parts of
speech like nouns, pronouns, adjectives, adverbs, and so on. The process of tagging will involve getting a text
corpus, tokenizing the text and assigning metadata information like tags to each word in the corpora. The
nltk.tag module contains implementation of different algorithms that can be used for such tagging and
other related activities.

Stemming and Lemmatization

A word can have several different forms based on what part of speech it is representing. Consider the

word fly; it can be present in various forms in the same text, like flying, flies, flyer, and so on. The process of
stemming is used to convert all the different forms of a word in to the base form, which is known as the root
step. Lemmatization is similar to stemming but the base form is known as the root word and it’s always a
semantically and lexicographically correct word. This conversion is crucial, as a lot of times the core word
contains more information about the document, which can be diluted by these different forms. The n1tk
module nltk.stem contains different techniques that can be used for stemming and lemmatizing a corpus.

114

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

Chunking

Chunking is a process which is similar to parsing or tokenization but the major difference is that instead of
trying to parse each word, we will target phrases present in the document. Consider the sentence “The brown
fox saw the yellow dog” In this sentence, we have two phrases which are of interest. The first is the phrase
“the brown fox,” which is a noun phrase and the second one is the phrase “the yellow dog,” which again is
anoun phrase. By using the process of chunking, we are able to tag phrases with additional parts of speech
information, which is important for understanding the structure of the document. The n1tk module
nltk.chunk consists of necessary techniques that can be used for applying the chunking process to our corpora.

Sentiment

Sentiment or emotion analysis is one of the most recognizable applications on text data. Sentiment analysis
is the process of taking a text document and trying to determine the opinion and polarity being represented
by that document. Polarity in the reference of a text document can mean the emotion, e.g., positive, negative,
or neutral being represented by the data. The sentiment analysis on textual data can be done using different
algorithms and at different levels of text segmentation. The nltk.sentiment package is the module that can
be used to perform different sentiment analyses on text documents. Check out Chapter 7 for a real-world
case study on sentiment analysis!

Classification/Clustering

Classification of text documents is a supervised learning problem, as we explained in the first chapter.
Classification of text documents may involve learning the sentiment, topic, theme, category, and so on of
several text documents (corpus) and then using the trained model to label unknown documents in the
future. The major difference from normal structured data comes in the form of feature representations of
unstructured text we will be using. Clustering involves grouping together similar documents based on some
similarity measure, like cosine similarity, bmz25 distance, or even semantic similarity. The nltk.classify
and nltk.cluster modules are typically used to perform these operations once we do the necessary feature
engineering and extraction.

Other Text Analytics Frameworks

Typically, nltk is our go-to library for dealing with text data, but the Python ecosystem also contains other
libraries that can be useful in dealing with textual data. We will briefly mention some of these libraries so
that you get a good grasp of the toolkit that you can arm yourself with when dealing with unstructured
textual data.

e pattern: The pattern framework is a web mining module for the Python
programming language. It has tools for web mining (extracting data from Google,
Twitter, a web crawler, or an HTML DOM parser), information retrieval, NLP,
Machine Learning, sentiment analysis and network analysis, and visualization.
Unfortunately, pattern currently works best on Python 2.7 and there is no official
port for Python 3.x.

e gensim: The gensim framework, which stands for generate similar, is a Python
library that has a core purpose of topic modeling at scale! This can be used to extract
semantic topics from documents. The focus of gensimis on providing efficient
topic modeling and similarity analysis. It also contains a Python implementation of
Google’s popular word2vec model.

115

http://dx.doi.org/10.1007/978-1-4842-3207-1_7

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

e textblob: This is another Python library that promises simplified text processing.
It provides a simple API for doing common text processing tasks including parts of
speech tagging, tokenization, phrase extraction, sentiment analysis, classification,
translation, and much more!

e spacy: This is a recent addition to the Python text processing landscape but an
excellent and robust framework nonetheless. The focus of spacy is industrial
strength natural language processing, so it targets efficient text analytics for large-
scale corpora. It achieves this efficiency by leveraging carefully memory-managed
operations in Cython. We recommend using spacy for natural language processing
and you will also see it being used extensively for our text normalization process in
Chapter 7.

Statsmodels

Statsmodels is a library for statistical and econometric analysis in Python. The advantage of languages like
Ris that it’s a statistically focused language with lot of capabilities. It consists of easy-to-use yet powerful
models that can be used for statistical analysis and modeling. However from deployment, integration, and
performance aspects, data scientists and engineers often prefer Python but it doesn’t have the power of
easy-to-use statistical functions and libraries like R. The statsmodels library aims to bridge this gap for
Python users. It provides the capabilities for statistical, financial and econometric operations with the aim
of combining the advantages of Python with the statistical powers of languages like R. Hence users familiar
with R, SAS, Stata, SPSS, and so on who might want similar functionality in Python can use statsmodels.
The initial statsmodel package was developed by Jonathan Taylor, a statistician at Stanford, as part of SciPy
under the name models. Improving this codebase was then accepted as a SciPy-focused project for the
Google Summer of Code in 2009 and again in 2010. The current package is available as a SciKit or an add-
on package for SciPy. We recommend you to check out the paper by Seabold, Skipper, and Josef Perktold,
“Statsmodels: Econometric and statistical modeling with Python,” proceedings of the 9th Python in Science
Conference, 2010.

Installation

The package can be installed using pip or conda install and the following commands.

pip install statsmodels
conda install -c conda-forge statsmodels

Modules

In this section, we briefly cover the important modules that comprise the statsmodel package and the
capability those models provides. This should give you enough idea of what to leverage to build statistical
models and perform statistical analysis and inference.

Distributions

One of the central ideas in statistics is the distributions of statistical datasets. Distributions are a listing or
function that assigns a probability value to all the possible values of the data. The distributions module of
the statsmodels package implements some important functions related to statistical distribution including
sampling from the distribution, transformations of distributions, generating cumulative distribution
functions of important distributions, and so on.

116

http://dx.doi.org/10.1007/978-1-4842-3207-1_7

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

Linear Regression

Linear regression is the simplest form of statistical modeling for modeling the relationship between a
response dependent variable and one or more independent variables such that the response variable
typically follows a normal distribution. The statsmodels.regression module allows us to learn linear
models on data with IID i.e., independently and identically distributed errors. This module allows us to use
different methods like ordinary least squares (OLS), weighted least squares (WLS), generalized least squares
(GLS), and so on, for the estimation of the linear model parameters.

Generalized Linear Models

Normal linear regression can be generalized if the dependent variable follows a different distribution than
the normal distribution. The statsmodels.genmod module allows us to extend the normal linear models to
different response variables. This allows us to predict the linear relationship between the independent and
dependent variable when the dependent variable follows distributions other than normal distributions.

ANOVA

Analysis of variance is a process of statistical processes used to analyze the difference between group means
and associated procedures. ANOVA analysis is an important way to test whether the means of several groups
are equal or unequal. This is an extremely powerful tool in hypothesis testing and statistical inference and is
implemented in the anova_lm module of the statsmodel package.

Time Series Analysis

Time series analysis is an important part of data analytics. A lot of data sources like stock prices, rainfall,
population statistics, etc. are periodic in nature. Time series analysis is used find structures, trends, and
patterns in these streams of data. These trends can be used to understand the underlying phenomena using
a mathematical model and even make predictions and forecasts about future events. Basic time series
models include univariate autoregressive models (AR), vector autoregressive models (VAR), univariate
autoregressive moving average models (ARMA), as well as the very popular autoregressive integrated
moving average (ARIMA) model. The tsa module of the statsmodels package provides implementation of
time series models and also provides tools for time series data manipulation.

Statistical Inference

An important part of traditional statistical inference is the process of hypothesis testing. A statistical
hypothesis is an assumption about a population parameter. Hypothesis testing is the formal process of
accepting or rejecting the assumption made about the data on the basis of observational data collected from
samples taken from the population. The stats.stattools module of statsmodels package implements the
most important of the hypothesis tests. Some of these tests are independent of any model, while some are
tied to a particular model only.

Nonparametric Methods

Nonparametric statistics refers to statistics that is not based on any parameterized family of probability
distributions. When we make an assumption about the distribution of a random variable we assign the
number of parameters required to ascertain its behavior. For example, if we say that some metric of interest
follows a normal distribution it means that we can understand its behavior if we are able to determine

117

CHAPTER 2 " THE PYTHON MACHINE LEARNING ECOSYSTEM

the mean and variance of that metric. This is the key difference in non-parametric methods, i.e., we don’t
have a fixed number of parameters that are required to describe an unknown random variable. Instead
the number of parameters are dependent on the amount of training data. The module nonparametric

in the statsmodels library will help us perform non-parametric analysis on our data. It includes kernel
density estimation for univariate and multivariate data, kernel regression, and locally weighted scatterplot
smoothing.

Summary

This chapter introduced a select group of packages that we will use routinely to process, analyze, and model
our data. You can consider these libraries and frameworks as the core tools of a data scientist’s toolbox. The
list of packages we covered is far from exhaustive but they certainly are the most important packages. We
strongly suggest you get more familiar with the packages by going through their documentation and relevant
tutorials. We will keep introducing and explaining other important features and aspects of these frameworks
in future chapters. The examples in this chapter, along with the conceptual knowledge provided in the first
chapter, should give you a good grasp toward understanding Machine Learning and solving problems in

a simple and concise way. We will observe, in the subsequent chapters, that often the process of learning
models on our data is a reiteration of these simple steps and concepts. In the next chapter, you learn how to
wield the set of tools to solve bigger and complex problems in the areas of data processing, wrangling, and
visualization.

118

PART Il

The Machine Learning Pipeline

CHAPTER 3

Processing, Wrangling, and
Visualizing Data

The world around us has changed tremendously since computers and the Internet became mainstream.
With the ubiquitous mobile phones and now Internet enabled devices, the line between the digital and
physical worlds is more blurred than it ever was. At the heart of all this is data. Data is at the center of
everything around us, be it finance, supply chains, medical science, space exploration, communication, and
what not. It is not surprising that we have generated 90% of the world’s data in just the last few years and this
is just the beginning. Rightly, data is being termed as the oil of the 21st Century. The last couple of chapters
introduced the concepts of Machine Learning and the Python ecosystem to get started. This chapter
introduces the core entity upon which the Machine Learning world relies to show its magic and wonders.

Everything digital has data at its core in some form or the other. Data is generated at various rates by
numerous sources across the globe in numerous formats. Before we dive into the specifics of Machine
Learning, we will spend some time and effort understanding this central entity called data. It is important
that we understand various aspects of it and get equipped with different techniques to handle it based on
requirements.

In this chapter we will cover the journey data takes through a typical Machine Learning related use
case where it goes from its initial raw form to a form where it can be used by Machine Learning algorithms/
models to work upon. We cover various data formats, processing and wrangling techniques to get the
data into a form where it can be utilized by Machine Learning algorithms for analysis. We also learn about
different visualization techniques to better understand the data at hand. Together these techniques will help
us be prepared for the problems to be solved in the coming chapters as well as in real-world scenarios.

Chapter 1 introduced the CRISP-DM methodology. It is one of the standard workflows followed by
Data Science teams across the world. In the coming sections of this chapter, we will concentrate on the
following sub-sections of this methodology:

e Data collection: To understand different data retrieval mechanisms for different
data types

e Data description: To understand various attributes and properties of the
data collected

e Datawrangling: To prepare data for consumption in the modeling steps

e Data visualization: To visualize different attributes for sharing results, better
understanding, and so on

The code samples, jupyter notebooks, and sample datasets for this chapter are available in the GitHub
repository for this book at https://github.com/dipanjanS/practical-machine-learning-with-python
under the directory/folder for Chapter 3.

© Dipanjan Sarkar, Raghav Bali and Tushar Sharma 2018 121
D. Sarkar et al., Practical Machine Learning with Python, https://doi.org/10.1007/978-1-4842-3207-1_3

https://doi.org/10.1007/978-1-4842-3207-1_3
http://dx.doi.org/10.1007/978-1-4842-3207-1_1
https://github.com/dipanjanS/practical-machine-learning-with-python
http://dx.doi.org/10.1007/978-1-4842-3207-1_3

CHAPTER 3 " PROCESSING, WRANGLING, AND VISUALIZING DATA

Data Collection

Data collection is where it all begins. Though listed as a step that comes post business understanding and
problem definition, data collection often happens in parallel. This is done in order to assist in augmenting
the business understanding process with facts like availability, potential value, and so on before a complete
use case can be formed and worked upon. Of course, data collection takes a formal and better form once the
problem statement is defined and the project gets underway.

Data is at the center of everything around us, which is a tremendous opportunity. Yet this also presents
the fact that it must be present in different formats, shapes, and sizes. Its omnipresence also means that
it exists in systems such as legacy machines (say mainframes), web (say web sites and web applications),
databases, flat files, sensors, mobile devices, and so on.

Let’s look at some of the most commonly occurring data formats and ways of collecting such data.

CSV

A CSV data file is one of the most widely available formats of data. It is also one of the oldest formats still
used and preferred by different systems across domains. Comma Separated Values (CSV) are data files that
contain data with each of its attributes delimited by a “,” (a comma). Figure 3-1 depicts a quick snapshot of
how a typical CSV file looks.

The sample CSV shows how data is typically arranged. It contains attributes of different data types
separated/delimited by a comma. A CSV may contain an optional header row (as shown in the example).
CSVs may also optionally enclose each of the attributes in single or double quotes to better demarcate.
Though usually CSVs are used to store tabular data, i.e., data in the form of rows and columns, this is not the
only way.

sno,fruit,color,pricé
1,apple,red,110.85
2,banana,yellow,50.12
3,mango,yellow,70.29
4,o0range,orange,80.00
5,kiwi,green,150.00
6,pineapple,yellow,90.00
7,guava,green,20.00

Figure 3-1. Sample CSV file

CSVs come in different variations and just changing the delimiter to a tab makes one a TSV (or a tab
separated values) file. The basic ideology here is to use a unique symbol to delimit/separate different attributes.

Now that we know how a CSV looks, let’s employ some Python magic to read/extract this data for use.
One of the advantages of using a language like Python is its ability to abstract and handle a whole lot of stuff.
Unlike other languages where specific libraries or a lot of code is required to get basic stuff done, Python
handles it with élan. Along the same lines is reading a CSV file. The simplest way to read a CSV is through the
Python csv module. This module provides an abstraction function called the reader().

122

CHAPTER 3 © PROCESSING, WRANGLING, AND VISUALIZING DATA

The reader function takes a file object as input to return an iterator containing the information read from
the csv file. The following code snippet uses the csv.reader () function to read a given file.

csv_reader = csv.reader(open(file name, 'rb'), delimiter=',")

Once the iterator is returned, we can easily iterate through the contents and get the data in the
form/format required. For the sake of completeness let’s go through an example where we read the contents
of the CSV shown in Figure 3-1 using the csv module. We will then extract each of its attributes and convert
the data into a dict with keys representing them. The following snippet forms the actions.

csv_rows = list()
csv_attr dict = dict()
csv_reader = None

read csv
csv_reader = csv.reader(open(file name, 'rb'), delimiter=delimiter)

iterate and extract data

for row in csv_reader:
print(row)
csv_rows.append(row)

iterate and add data to attribute lists
for row in csv_rows[1:]:
csv_attr dict['sno'].append(row[0])
csv_attr dict['fruit'].append(row[1])
csv_attr dict['color'].append(row[2])
csv_attr dict['price'].append(row[3])

The output is a dict containing each attribute as a key with values and as an ordered 1ist of values
read from the CSV file.

CSV Attributes::

{'color': ['red', 'yellow', 'yellow', 'orange', 'green’', 'yellow', 'green'],
"fruit': ['apple', 'banana', 'mango', 'orange', 'kiwi', 'pineapple', 'guava'l],
'price': ['110.85', '50.12', '70.29', '80.00', '150.00', '90.00', '20.00'],
'Sno': ['1‘1 '2" ‘3') l4') '5|J '6l) ‘7']}

The extraction of data from a CSV and its transformation depends on the use case requirements. The
conversion of our sample CSV into a dict of attributes is one way. We may choose different output format
depending on the data and our requirements.

Though the workflow to handle and read a CSV file is pretty straightforward and easy to use, we would
like to standardize and speed up our process. Also, more often than not, it is easier to understand data in
a tabular format. We were introduced to the pandas library in the previous chapter with some amazing
capabilities. Let’s now utilize pandas to read a CSV as well.

The following snippet shows how pandas makes reading and extracting data from a CSV that’s simpler
and consistent as compared to the csv module.

df = pd.read csv(file name,sep=delimiter)

123

CHAPTER 3 " PROCESSING, WRANGLING, AND VISUALIZING DATA

With a single line and a few optional parameters (as per requirements), pandas extracts data from a
CSV file into a dataframe, which is a tabular representation of the same data. One of the major advantages of
using pandas is the fact that it can handle a lot of different variations in CSV files, such as files with or without
headers, attribute values enclosed in quotes, inferring data types, and many more. Also, the fact that various
machine learning libraries have the capability to directly work on pandas dataframes, makes it virtually a de
facto standard package to handle CSV files.

The previous snippet generates the following output dataframe:

sno fruit color price
apple red 110.85
banana yellow 50.12
mango yellow 70.29
orange orange 80.00
kiwi green 150.00
pineapple yellow 90.00
guava green 20.00

SoauUvlT B~ W N R O
N ouvi s W N R

Note pandas makes the process of reading CSV files a breeze, yet the csv module comes in handy when
we need more flexibility. For example, not every use case requires data in tabular form or the data might not be
consistently formatted and requires a flexible library like csv to enable custom logic to handle such data.

Along the same lines, data from flat files containing delimiters other than ; (comma) like tabs or
semicolons can be easily handled with these two modules. We will use these utilities while working on
specific use cases in further chapters; until then, you are encouraged to explore and play around with these
for a better understanding.

JSON

Java Script Object Notation (JSON) is one of the most widely used data interchange formats across the digital
realm. JSON is a lightweight alternative to legacy formats like XML (we shall discuss this format next). JSON
is a text format that is language independent with certain defined conventions. JSON is a human-readable
format that is easy/simple to parse in most programming/scripting languages. A JSON file/object is simply
a collection of name(key)-value pairs. Such key-value pair structures have corresponding data structures
available in programming languages in the form of dictionaries (Python dict), struct, object, record,
keyed lists, and so on. More details are available at http://www.json.org/.

The JSON standard defines the structure, as depicted in Figure 3-2.

Figure 3-2. JSON object structure (reference: http://www. json.orq/)

124

http://www.json.org/
http://www.json.org/

CHAPTER 3 © PROCESSING, WRANGLING, AND VISUALIZING DATA

Figure 3-3 is a sample JSON depicting a record of glossary with various attributes of different data types.

{
"glossary”: {
"title": "example glossary"”,
"GlossDiv": {
"title™: "5",
"GlossList™: {
"GlossEntry™: {
"ID": “SGML",
"SortAs": "SGML",
"GlossTerm": "Standard Generalized Markup Language",
"Acronym": "SGML",
“Abbrev": "ISO 8879:1986",
"GlossDef™: {
"para”: "A meta-markup language, used to create markup languages such as DocBook.",
"GlossSeeAlso™: ["GML", "XML"]
}l
"GlossSee”: "markup”
}
}
}
}
}

Figure 3-3. Sample JSON (reference: http://www.json.org/)

JSONSs are widely to send information across systems. The Python equivalent of a JSON object is the
dict data type, which itself is a key-value pair structure. Python has various JSON related libraries that
provide abstractions and utility functions. The json library is one such option that allows us to handle JSON
files/objects. Let’s first take a look at our sample JSON file and then use this library to bring this data into
Python for use.

{
"outer_col_1":[

{
"nested_inner_col_1":"val_1",
"nested_inner_col_2":2

bs

{
"nested_inner_col_1":"val_2",
"nested_inner_col_2":2

¥

1,
"outer_col_2":{

"inner_col_1":3

by
“"outer_col_3":4
by

Figure 3-4. Sample JSON with nested attributes

125

http://www.json.org/

CHAPTER 3 " PROCESSING, WRANGLING, AND VISUALIZING DATA

The JSON object in Figure 3-4 depicts a fairly nested structure that contains values of string, numeric,
and array type. JSON also supports objects, Booleans, and other data types as values as well. The following
snippet reads the contents of the file and then utilizes json.loads () utility to parse and convert it into a
standard Python dict.

json filedata = open(file name).read()
json data = json.loads(json filedata)

json_data is a Python dict with keys and values of the JSON file parsed and type casted as Python data
types. The json library also provides utilities to write back Python dictionaries as JSON files with capabilities
of error checking and typecasting. The output of the previous operation is as follows.

outer_col 1 :
nested inner col 1 : val 1
nested inner col 2 : 2
nested_inner col 1 : val 2
nested_inner col 2 : 2
outer_col 2 :
inner_col 1 : 3
outer col 3 : 4

Before we move on to our next format, it is worth noting that pandas also provides utilities to parse
JSONSs. The pandas read_json() is a very powerful utility that provides multiple options to handle JSONs
created in different styles. Figure 3-5 depicts a sample JSON representing multiple data points, each with two
attributes listed as col_1 and col_2.

126

]

Figure 3-5. Sample JSON depicting records with similar attributes

"col 1":"a”,
"col_2":"b"

"col. 1%,
"col 2":"d"

“eol 1%:"e”,

"col 2" "F"
"col 1":"g",
"col 2":"h"

PROCESSING, WRANGLING, AND VISUALIZING DATA

We can easily parse such a JSON using pandas by setting the orientation parameter to “records”, as

shown here.

df = pd.read json(file name,orient="records")

The output is a tabular dataframe with each data point represented by two attribute values as follows.

col 1 col
a

Uvih W N RO
A H-0Q o N

2
b
d
.F
h
j
1

127

CHAPTER 3 " PROCESSING, WRANGLING, AND VISUALIZING DATA

You are encouraged to read more about pandas read_json() at https://pandas.pydata.org/pandas-
docs/stable/generated/pandas.read_json.html.

XML

Having covered two of the most widely used data formats, so now let’s take a look at XML. XMLs are quite a
dated format yet is used by a lot many systems. XML or eXtensible Markup Language is a markup language
that defines rules for encoding data/documents to be shared across the Internet. Like JSON, XML is also a
text format that is human readable. Its design goals involved strong support for various human languages
(via Unicode), platform independence, and simplicity. XMLs are widely used for representing data of varied
shapes and sizes.

XMLs are widely used as configuration formats by different systems, metadata, and data representation
format for services like RSS, SOAP, and many more.

XML is a language with syntactic rules and schemas defined and refined over the years. The most
import components of an XML are as follows:

e Tag: A markup construct denoted by strings enclosed with angled braces (“<” and “>”").
e Content: Any data not marked within the tag syntax is the content of the XML file/object.

e Element: A logical construct of an XML. An element may be defined with a start and
an end tag with or without attributes, or it may be simply an empty tag.

e Attribute: Key-value pairs that represent the properties or attributes of the element
in consideration. These are enclosed within a start or an empty tag.

Figure 3-6 is a sample XML depicting various components of the eXtensible Markup Language. More
details on key concepts and details can be browsed at https://www.w3schools.com/xml/.

<?xml version="1.0"?>
- <records attr="sample xml records">
- <record name="rec_1"> Element
- <sub_element> v
cdetalll > Attribute 1<,/ detal

<fsub_element>
<sub_element_with_attr attr="complex"> qsub_elemenl_with_attw
<sub_element_only_attr attr_val="only_attr’/ >
</record> .
- <record name="rec_2"> * Content
- <sub_element>
<detaill >Attribute 1</detaill>
<detail2>2</detail2>
</sub_element>
<sub_element_with_attr attr="complex”> Sub_Element_Text </sub_element_with_attr>
<sub_element_only_attr attr_val="only_attr"/>
</record>

- <sub_element>
<detaill>Attribute 1</detaill>

<detail2>2</detail2>
</sub_element>

lement_Text </sub_element_with_attr>

sub_element_only_attr attr_val="only_attr"/>

</record> .
</records> * Empty element

Figure 3-6. Sample XML annotated with key components

XMLs can be viewed as tree structures, starting with one root element that branches off into various
elements, each with their own attributes and further branches, the content being at leaf nodes.

128

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_json.html
https://www.w3schools.com/xml/

CHAPTER 3 * PROCESSING, WRANGLING, AND VISUALIZING DATA

Most XML parsers use this tree-like structure to read XML content. The following are the two major
types of XML parsers:

e DOM parser: The Document Object Model parser is the closest form of tree
representation of an XML. It parses the XML and generates the tree structure. One
big disadvantage with DOM parsers is their instability with huge XML files.

e SAX parser: The Simple API for XML (or SAX for short) is a variant widely used on
the web. This is an event-based parser that parses an XML element by element and
provides hooks to trigger events based on tags. This overcomes the memory-based
restrictions of DOM but lacks overall representation power.

There are multiple variants available that derive from these two types. To begin with, let’s take a look at the
ElementTree parser available from Python’s xml library. The ElementTree parser is an optimization over the
DOM parser and it utilizes Python data structures like 1ists and dicts to handle data in a concise manner.

The following snippet uses the ElementTree parser to load and parse the sample XML file we saw
previously. The parse() function returns a tree object, which has various attributes, iterators, and utilities to
extract root and further components of the parsed XML.

tree = ET.parse(file name)
root = tree.getroot()

print("Root tag:{0}".format(root.tag))
print("Attributes of Root:: {0}".format(root.attrib))

The two print statements provide us with values related to the root tag and its attributes (if there are
any). The root object also has an iterator attached to it which can be used to extract information related to all
child nodes. The following snippet iterates the root object to print the contents of child nodes.

for child in xml:root:
print("{o}tag:{1}, attribute:{2}".format(
"\t"*indent level,
child.tag,
child.attrib))

print("{o}tag data:{1}".format("\t"*indent level,
child.text))

The final output generated by parsing the XML using ElementTree is as follows. We used a custom print
utility to make the output more readable, the code for which is available on the repository.

Root tag:records

Attributes of Root:: {'attr': 'sample xml records'}
tag:record, attribute:{'name': 'rec_1'}

tag data:

tag:sub_element, attribute:{}
tag data:

tag:detail1, attribute:{}
tag data:Attribute 1
tag:detail2, attribute:{}
tag data:2

129

CHAPTER 3 " PROCESSING, WRANGLING, AND VISUALIZING DATA

tag:
tag

tag:

tag
tag:record,
tag data:

tag:
tag

tag:
tag

tag:
tag

sub_element with attr, attribute:{'attr': 'complex'}
data:
Sub_Element_Text

sub_element only attr, attribute:{'attr val': 'only attr'}
data:None
attribute:{"'name': 'rec 2'}

sub_element, attribute:{}
data:

tag:detail1, attribute:{}

tag data:Attribute 1

tag:detail2, attribute:{}

tag data:2
sub_element with attr, attribute:{'attr': 'complex'}
data:
Sub_Element Text

sub_element_only attr, attribute:{'attr_val': 'only attr'}
data:None

The xml library provides very useful utilities exposed through the ElementTree parser, yet it lacks a
lot of fire power. Another Python library, xmltodict, provides similar capabilities but uses Python’s native
data structures like dicts to provide a more Pythonic way to handle XMLs. The following is a quick snippet
to parse the same XML. Unlike ElementTree, the parse() function of xmltodict reads a file object and
converts the contents into nested dictionaries.

xml filedata
ordered dict

open(file name).read()
= xmltodict.parse(xml_filedata)

The output generated is similar to the one generated using ElementTree with the exception that
xmltodict uses the @ symbol to mark elements and attributes automatically. The following is the sample

output.

records :
@att
record :

r : sample xml records

@name : rec 1

sub_element :

detaill : Attribute 1
detail2 : 2

sub_element_with_attr :

sub_element

130

@attr : complex

#itext : Sub_Element Text
only attr :

@attr_val : only attr

CHAPTER 3 © PROCESSING, WRANGLING, AND VISUALIZING DATA

HTML and Scraping

We began the chapter talking about the immense amount of information/data being generated at break-
neck speeds. The Internet or the web is one of the driving forces for this revolution coupled with immense
reach due to computers, smartphones and tablets.

The Internet is a huge interconnected web of information connected through hyperlinks. A large
amount of data on the Internet is in the form of web pages. These web pages are generated, updated,
and consumed millions of times day in and day out. With information residing in these web pages, it is
imperative that we must learn how to interact and extract this information/data as well.

So far we have dealt with formats like CSV, JSON, and XML, which can be made available/extracted
through various methods like manual downloads, APIs, and so on. With web pages, the methods change.
In this section we will discuss the HTML format (the most common form of web page related format) and
web-scraping techniques.

HTML

The Hyper Text Markup Language (HTML) is a markup language similar to XML. HTML is mainly used by
web browsers and similar applications to render web pages for consumption.

HTML defines rules and structure to describe web pages using markup. The following are standard
components of an HTML page:

e Element: Logical constructs that form the basic building blocks of an HTML page

e Tags: A markup construct defined by angled braces (< and >). Some of the important
tags are:

e <html></html>: This pair of tags contains the whole of HTML document.
It marks the start and end of the HTML page.

e <body></body>: This pair of tags contains the main content of the HTML page
rendered by the browser.

There are many more standard set of tags defined in the HTML standard; further information is
available at https://www.w3schools.com/html/html_intro.asp

The following is a snippet to generate an HTML page that’s rendered by a web browser, as shown in the
screenshot in Figure 3-7.

<IDOCTYPE html>

<html>

<head>

<title>Sample HTML Page</title>
</head>

<body>

<h1>Sample WebPage</h1>
<p>HTML has been rendered</p>

</body>
</html>

131

https://www.w3schools.com/html/html_intro.asp

CHAPTER 3 " PROCESSING, WRANGLING, AND VISUALIZING DATA

C)} | Q sample_htmlhtml

Sample WebPage

HTML has been rendered

Figure 3-7. Sample HTML page as rendered in browser

Browsers use markup tags to understand special instructions like text formatting, positioning,
hyperlinks, and so on but only renders the content for the end user to see. For use cases where data/
information resides in HTML pages, we need special techniques to extract this content.

Web Scraping

Web scraping is a technique to scrape or extract data from the web, particularly from web pages. Web
scraping may involve manually copying the data or using automation to crawl, parse, and extract
information from web pages. In most contexts, web scraping refers to automatically crawling a particular
web site or a portion of the web to extract and parse information that can be later on used for analytics or
other use cases. A typical web scraping flow can be summarized as follows:

e Crawl: Abot or aweb crawler is designed to query a web server using the required
set of URLSs to fetch the web pages. A crawler may employ sophisticated techniques
to fetch information from pages linked from the URLs in question and even parse
information to a certain extent. Web sites maintain a file called robots.txt to employ
what is called as the “Robots Exclusion Protocol” to restrict/provide access to their
content. More details are available at http://www.robotstxt.org/robotstxt.html.

e Scrape: Once the raw web page has been fetched, the next task is to extract
information from it. The task of scraping involves utilizing techniques like regular
expressions, extraction based on XPath, or specific tags and so on to narrow down to
the required information on the page.

Web scraping involves creativity from the point of view of narrowing down to the exact piece of
information required. With web sites changing constantly and web pages becoming dynamic (see asp, jsp,
etc.), presence of access controls (username/password, CAPTCHA, and so on) complicate the task even
more. Python is a very powerful programming language, which should be evident by now, and scraping the
web is another task for which it provides multiple utilities. Let’s begin with extracting a blog post’s text from
the Apress blog to better understand web scraping.

The first task is to identify the URL we are interested in. For our current example, we concentrate on the
first blog post of the day on Apress web site’s blog page at http://www.apress.com/in/blog/all-blog-posts.
Clicking on the top most blog post takes us to the main article in consideration. The article is shown in the
screen in Figure 3-8.

132

http://www.robotstxt.org/robotstxt.html
http://www.apress.com/in/blog/all-blog-posts

CHAPTER 3 * PROCESSING, WRANGLING, AND VISUALIZING DATA

A I_) ress ™ jogin | [re—

CATEGORIES SERVICES APRESS OPEN BLOG WRITE SHOP Search S’\

Wannacry: Why It's Only the Beginning, and How
to Prepare for What Comes Next

By Mike Halsey

It was a perfectly ordinary Friday when the Wannacry ransomware struck in May 2017. The
malware spread around the world to more than 150 countries in just a matter of a few hours,
affecting the National Health Service in the UK, telecoms provider Telefonica in Spain, and many
other organisations and businesses in the USA, Canada, China, Japan, Russia, and right across
Europe, the Middle-East, and Asia

The malware was reported to have been stolen in an attack on the US National Security Agency
(NSA), though the NSA denied this, and exploited vulnerabilities in the Microsoft Windows
operating system. Microsoft had been aware of the vulnerabilities since early in the year, and had
patched them back in March. However, the patches were only applicable for currently supported

R S R e e

Figure 3-8. A blog post on Apress.com

Now that we have the required page and its URL, we will use the requests library to query the required
URL and get a response. The following snippet does the same.

base_url = "http://www.apress.com/in/blog/all-blog-posts"
blog suffix = "/wannacry-how-to-prepare/12302194"

response = requests.get(base_url+blog suffix)

If the get request is successful, the response object’s status_code attribute contains a value of 200
(equivalent to HTML success code). Upon getting a successful response, the next task is to devise a method
to extract the required information.

Since in this case we are interested in the blog post’s actual content, let’s analyze the HTML behind the
page and see if we can find specific tags of interest.

Note Most modern browsers come with HTML inspection tools built-in. If you are using Google Chrome,
press F12 or right-click on the page and select Inspect or View Source. This opens the HTML code for you to
analyze.

133

CHAPTER 3 " PROCESSING, WRANGLING, AND VISUALIZING DATA
Figure 3-9 depicts a snapshot of the HTML behind the blog post we are interested in.
Wannacry: Why It's Only the Beginning, and How
to Prepare for What Comes Next

By Mike Halsey

It was a perfectly ordinary Friday when the Wannacry ransomware struck in May 2017. The
malware spread around the world to more than 150 countries in just a matter of a few hours,
affectinn the Natinnal Health Service in the LIK_telacams nrovider Telefonica in Snain_and many

onsole Sources Network Performance Memory Application Security Audits AdBlock

3= LI TUUILOL T LTI AL

columns small-12
ms-common cms-article default-table
Y lSp

12302154
Wannacry: Why It's Only the Beginning, and How to Prepare for What Comes Next

dchtext
intro--paragraph

¥ipy == 58
"It was a perfectly ordinary Friday when the Wannacry ranscmware struck in May 20817. The malware spread aroun
than 158 countries in just a matter of a few hours, affecting the National Health Service in the UK, telecoms
in Spain, and many other organisations and businesses in the USA, Canada, China, Japan, Russia, and right acr
Midole-East, and Asia.”

world to more
ider Telefonica
urope, the

v

pr-t/p
¥ piai/p

Figure 3-9. Inspecting the HTML content of a blog post on Apress.com

Upon careful inspection, we can clearly see text of the blog post is contained within the div tag
<div class="cms-richtext">. Now that we have narrowed down to the tag of interest, we use Python’s
regular expression library re to search and extract data contained within these tags only. The following
snippet utilizes re.compile() to compile a regular expression and then uses re.findall() to extract the
information from the fetched response.

content_pattern = re.compile(r'<div class="cms-richtext">(.*?)</div>")
result = re.findall(content pattern, content)

The output of the find operation is the required text from the blog post. Of course, it still contains
HTML tags interlaced between the actual text. We can perform further clean up to reach the required levels,
yet this is a good start. The following is snapshot of information extracted using regular expressions.

Out[59]: '<p class="intro--paragraph">By Mike Halsey</p><p>
</p><p>It was a
perfectly ordinary Friday when the Wannacry ransomware struck in May 2017. The malware
spread around the world to more than 150 countries in just a matter of a few hours,
affecting the National Health Service in the UK, telecoms provider Telefonica in Spain,

and many other organisations and businesses in the USA, Canada, China, Japan, Russia, and
right across Europe, the Middle-East, and Asia.</p><p>The malware was reported to have been
stolen in an attack on the US National Security Agency (NSA), though the NSA denied this,
and exploited vulnerabilities in the Microsoft Windows operating system. Microsoft had been
aware of the vulnerabilities since early in the year, and had patched them back in March.

134

CHAPTER 3 * PROCESSING, WRANGLING, AND VISUALIZING DATA

This was a straightforward and a very basic approach to get the required data. What if we want to go a
step further and extract information related to all blog posts on the page and perform a better cleanup?

For such a task, we utilize the BeautifulSoup library. BeautifulSoup is the go-to standard library for
web scraping and related tasks. It provides some amazing functionality to ease out the scraping process.
For the task at hand, our process would be to first crawl the index page and extract the URLs to all the blog
post links listed on the page. For this we would use the requests.get () function to extract the content and
then utilize BeautifulSoup’s utilities to get the content from the URLs. The following snippet showcases the
function get_post_mapping(), which parses the home page content to extract the blog post headings and
corresponding URLs into a dictionary. The function finally returns a list of such dictionaries.

def get post_mapping(content):
"""This function extracts blog post title and url from response object

Args:
content (request.content): String content returned from requests.get

Returns:
list: a list of dictionaries with keys title and url

post_detail list = []
post_soup = BeautifulSoup(content,"lxml")
h3_content = post_soup.find all("h3")

for h3 in h3_content:
post detail list.append(
{'title':h3.a.get text(), 'url':h3.a.attrs.get("'href')}
)

return post_detail list

The pervious function first creates an object of BeautifulSoup specifying 1xml as its parser. It then
uses the h3 tag and a regex based search to extract the required list of tags (we got to the h3 tag by the same
inspect element approach we utilized previously). The next task was to simply iterate through the list of the
h3 tags and utilize the get_text() utility function from BeautifulSoup to get the blog post heading and its
corresponding URL. The list returned from the function is as follows.

[{"title': u"Wannacry: Why It's Only the Beginning, and How to Prepare for What Comes Next",
‘url': '/in/blog/all-blog-posts/wannacry-how-to-prepare/12302194 "'},
{'title': u'Reusing ngrx/effects in Angular (communicating between reducers)',
‘url': '/in/blog/all-blog-posts/reusing-ngrx-effects-in-angular/12279358'},
{"title': u'Interview with Tony Smith - Author and SharePoint Expert',
‘url': '/in/blog/all-blog-posts/interview-with-tony-smith-author-and-sharepoint-expert/12271238'},
{"title': u'Making Sense of Sensors \u2013 Types and Levels of Recognition’,
‘url': '/in/blog/all-blog-posts/making-sense-of-sensors/12253808"},
{"title': u'VS 2017, .NET Core, and JavaScript Frameworks, Oh My!"',
'url': '/in/blog/all-blog-posts/vs-2017-net-core-and-javascript-frameworks-oh-my/12261706"}]

135

CHAPTER 3 " PROCESSING, WRANGLING, AND VISUALIZING DATA

Now that we have the list, the final step it to iterate through this list of URLs and extract each blog post’s
text. The following function showcases how BeautifulSoup simplifies the task as compared to our previous
method of using regular expressions. The method of identifying the required tag remains the same, though
we utilize the power of this library to get text that is free from all HTML tags.

def get post content(content):
"""This function extracts blog post content from response object

Args:
content (request.content): String content returned from requests.get

Returns:
str: blog's content in plain text

plain_text =

text_soup = BeautifulSoup(content,"1xml")

para_list = text soup.find all("div",
{'class':"'cms-richtext'})

for p in para_list[o0]:
plain_text += p.getText()

return plain_text

The following output is the content from one of the posts. Pay attention to the cleaner text in this case as
compared to our previous approach.

By Mike HalseyIt was a perfectly ordinary Friday when the Wannacry ransomware struck in May
2017. The malware spread around the world to more than 150 countries in just a matter of a
few hours, affecting the National Health Service in the UK, telecoms provider Telefonica in
Spain, and many other organisations and businesses in the USA, Canada, China, Japan, Russia,
and right across Europe, the Middle-East, and Asia.The malware was reported to have been
stolen in an attack on the US National Security Agency (NSA), though the NSA denied this,
and exploited vulnerabilities in the Microsoft Windows operating system. Microsoft had been
aware of the vulnerabilities since early in the year, and had patched them back in March.

Through these two methods, we crawled and extracted information related to blog posts from our web site
of interest. You are encouraged to experiment with other utilities from BeautifulSoup along with other web
sites for a better understanding. Of course, do read the robots.txt and honor the rules set by the webmaster.

SQL

Databases date back to the 1970s and represent a large volume of data stored in relational form. Data
available in the form of tables in databases, or to be more specific, relational databases, comprise of another
format of structured data that we encounter when working on different use cases. Over the years, there have
been various flavors of databases available, most of them conforming to the SQL standard.

The Python ecosystem handles data from databases in two major ways. The first and the most common
way used while working on data science and related use cases is to access data using SQL queries directly. To
access data using SQL queries, powerful libraries like sqlalchemy and pyodbc provide convenient interfaces
to connect, extract, and manipulate data from a variety of relational databases like MS SQL Server, MySQL,

136

CHAPTER 3 * PROCESSING, WRANGLING, AND VISUALIZING DATA

Oracle, and so on. The sqlite3 library provides a lightweight easy-to-use interface to work with SQLite
databases, though the same can be handled by the other two libraries as well.

The second way of interacting with databases is the ORM or the Object Relational Mapper method.
This method is synonymous to the object oriented model of data, i.e., relational data is mapped in terms
of objects and classes. Sqlalchemy provides a high-level interface to interact with databases in the ORM
fashion. We will explore more on these based on the use cases in the subsequent chapters.

Data Description

In the previous section, we discussed various data formats and ways of extracting information from them.
Each of the data formats comprised of data points with attributes of diverse types. These data types in their
raw data forms form the basis of input features utilized by Machine Learning algorithms and other tasks

in the overall Data Science workflow. In this section, we touch upon major data types we deal with while
working on different use cases.

Numeric

This is simplest of the data types available. It is also the type that is directly usable and understood by most
algorithms (though this does not imply that we use numeric data in its raw form). Numeric data represents
scalar information about entities being observed, for instance, number of visits to a web site, price of a
product, weight of a person, and so on. Numeric values also form the basis of vector features, where each
dimension is represented by a scalar value. The scale, range, and distribution of numeric data has an implicit
effect on the algorithm and/or the overall workflow. For handling numeric data, we use techniques such as
normalization, binning, quantization, and many more to transform numeric data as per our requirements.

Text

Data comprising of unstructured, alphanumeric content is one of most common data types. Textual data
when representing human language content contains implicit grammatical structure and meaning. This
type of data requires additional care and effort for transformation and understanding. We cover aspects of
transforming and using textual data in the coming chapters.

Categorical

This data type stands in between the numeric and text. Categorical variables refer to categories of entities
being observed. For instance, hair color being black, brown, blonde and red or economic status as low,
medium, or high. The values may be represented as numeric or alphanumeric, which describe properties of
items in consideration. Based on certain characteristics, categorical variables can be seen as:

e Nominal: These define only the category of the data point without any ordering
possible. For instance, hair color can be black, brown, blonde, etc., but there cannot
be any order to these categories.

e Ordinal: These define category but can also be ordered based on rules on the
context. For example, people categorized by economic status of low, medium, or
high can be clearly ordered/sorted in the respective order.

137

CHAPTER 3 " PROCESSING, WRANGLING, AND VISUALIZING DATA

It is important to note that standard mathematical operations like, addition, subtraction, multiplication,
etc. do not carry meaning for categorical variables even though that may be allowed syntactically
(categorical variables represented as numbers). Thus is it important to handle categorical variables with care
and we will see a couple of ways of handling categorical data in the coming section.

Different data types form the basis of features that are ingested by algorithms for analysis of data at
hand. In the coming sections and chapters, especially Chapter 4: Feature Engineering and Selection, you will
learn more on how to work with specific data types.

Data Wrangling

So far in this chapter we discussed data formats and data types and learned about ways of collecting
data from different sources. Now that we have an understanding of the initial process of collecting and
understanding data, the next logical step is to be able to use it for analysis using various Machine Learning
algorithms based upon the use case at hand. But before we reach the stage where this “raw” data is
anywhere close to be useable for the algorithms or visualizations, we need to polish and shape it up.

Data wrangling or data munging is the process of cleaning, transforming, and mapping data from one
form to another to utilize it for tasks such as analytics, summarization, reporting, visualization, and so on.

Understanding Data

Data wrangling is one of most important and involving steps in the whole Data Science workflow. The output
of this process directly impacts all downstream steps such as exploration, summarization, visualization,
analysis and even the final result. This clearly shows why Data Scientists spend a lot of time in Data
Collection and Wrangling. There are a lot many surveys which help in bringing this fact out that more than
often, Data Scientists end up spending 80% of their time in data processing and wrangling!

So before we get started with actual use cases and algorithms in the coming chapters, it is imperative
that we understand and learn how to wrangle our data and transform it into a useable form. To begin with,
let’s first describe the dataset at hand. For the sake of simplicity, we prepare a sample dataset describing
product purchase transactions by certain users. Since we already discussed ways of collecting/extracting
data, we will skip that step for this section. Figure 3-10 shows a snapshot of dataset.

Date Price Product ID | Quantity Purchased | Serial No | User ID | User Type
0|NaN 3021.06 (417 13 1000 5958 |NaN
1|NaN 182262731 1 1001 5351 o
2|2016-07-01(542.36 (829 2 1002 5799 |a
3|2016-01-20|2323.30| 905 0 1003 5480 d
4(2016-01-19|243.43 | 158 37 1004 5790 |a
512016-01-16|274.26 |754 33 1005 5820 a
6| NaN 5836.68 [341 18 1006 5468 |c
712016-01-19 | NaN 819 34 1007 5486 b
8|2016-01-23(1171.88 (929 12 1008 5143 |a
912016-07-01|668.80 |718 31 1009 5510 d

Figure 3-10. Sample dataset

138

http://dx.doi.org/10.1007/978-1-4842-3207-1_4

CHAPTER 3 * PROCESSING, WRANGLING, AND VISUALIZING DATA

Note The dataset in consideration has been generated using standard Python libraries like
random, datetime, numpy, pandas,and so on. This dataset has been generated using a utility function called
generate_sample data() available in the code repository for this book. The data has been randomly generated
and is for representational purposes only.

The dataset describes transactions having the following attributes/features/properties:
e Date: The date of the transaction
e Price: The price of the product purchased
e Product ID: Product identification number
¢ Quantity Purchased: The quantity of product purchased in this transaction
e Serial No: The transaction serial number
e User ID: Identification number for user performing the transaction
e User Type: The type of user

Let’s now begin our wrangling/munging process and understand various methods/tricks to clean,
transform, and map our dataset to bring it into a useable form. The first and the foremost step usually is
to get a quick peak into the number of records/rows, the number of columns/attributes, column/attribute
names, and their data types.

For the majority of this section and subsequent ones, we will be relying on pandas and its utilities to
perform the required tasks. The following snippet provides the details on row counts, attribute counts,
and details.

print("Number of rows::",df.shape[0])
print("Number of columns::",df.shape[1])

print("Column Names::",df.columns.values.tolist())
print("Column Data Types::\n",df.dtypes)
The required information is available straight from the pandas dataframe itself. The shape attribute
is a two-value tuple representing the row count and column count, respectively. The column names are
available through the columns attributes, while the dtypes attribute provides us with the data type of each of

the columns in the dataset. The following is the output generated by this snippet.

Number of rows:: 1001
Number of columns:: 7

Column Names:: ['Date', 'Price', 'Product ID', 'Quantity Purchased', 'Serial No', 'User ID',
'User Type']

Column Data Types::

Date object
Price float64

139

CHAPTER 3 " PROCESSING, WRANGLING, AND VISUALIZING DATA

Product ID int32
Quantity Purchased int32
Serial No int32
User ID int32
User Type object

dtype: object

The column names are clearly listed and have been explained previously. Upon inspecting the data types,
we can clearly see that the Date attribute is represented as an object. Before we move on to transformations and
cleanup, let’s dig in further and collect more information to understand and prepare a strategy of required tasks
for dataset wrangling. The following snippet helps get information related to attributes/columns containing
missing values, count of rows, and indices that have missing values in them.

print("Columns with Missing Values::",df.columns[df.isnull().any()].tolist())
print("Number of rows with Missing Values::",len(pd.isnull(df).any(1).nonzero()[0].tolist()))
print("Sample Indices with missing data::",pd.isnull(df).any(1).nonzero()[0].tolist()[0:5])

With pandas, subscripting works with both rows and columns (see Chapter 2 for details). We use
isnull() to identify columns containing missing values. The utilities any() and nonzero() provide nice
abstractions to identify any row/column conforming to a condition (in this case pointing to rows/columns
having missing values). The output is as follows.

Columns with Missing Values:: ['Date', 'Price', 'User Type']
Number of rows with Missing Values:: 61
Sample Indices with missing data:: [oL, 1L, 6L, 7L, 10L]

Let’s also do a quick fact checking to get details on non-null rows for each column and the amount of
memory consumed by this dataframe. We also get some basic summary statistics like min, max, and so on;
these will be useful in coming tasks. For the first task, we use the info() utility while the summary statistics
are provided by the describe() function. The following snippet does this.

print("General Stats::")
print(df.info())

print("Summary Stats::")
print(df.describe())

The following is the output generated using the info() and describe() utilities. It shows Date and Price
both have about 970 non-null rows, while the dataset consumes close to 40KB of memory. The summary
stats are self-explanatory and drop the non-numeric columns like Date and User Type from the output.

General Stats::

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1001 entries, 0 to 1000
Data columns (total 7 columns):

Date 970 non-null object
Price 970 non-null float64
Product ID 1001 non-null int32

Quantity Purchased 1001 non-null int32

140

http://dx.doi.org/10.1007/978-1-4842-3207-1_2

CHAPTER 3 © PROCESSING, WRANGLING, AND VISUALIZING DATA

Serial No 1001 non-null int32
User ID 1001 non-null int32
User Type 1000 non-null object

dtypes: float64(1), int32(4), object(2)
memory usage: 39.2+ KB
None

Summary Stats::

Price Product ID Quantity Purchased Serial No User ID
count 970.000000 1001.000000 1001.000000 1001.000000 1001.000000
mean 1523.906402 600.236763 20.020979 1452.528472 5335.669331
std 1130.331869 308.072110 11.911782 386.505376 994.777199
min 2.830000 0.000000 0.000000 -1.000000 -101.000000
25% 651.622500 342.000000 10.000000 1223.000000 5236.000000
50% 1330.925000 635.000000 20.000000 1480.000000 5496.000000
75% 2203.897500 875.000000 30.000000 1745.000000 5726.000000
max 5840.370000 1099.000000 41.000000 2000.000000 6001.000000
Filtering Data

We have completed our first pass of the dataset at hand and understood what it has and what is missing.
The next stage is about cleanup. Cleaning a dataset involves tasks such as removing/handling incorrect or
missing data, handling outliers, and so on. Cleaning also involves standardizing attribute column names
to make them more readable, intuitive, and conforming to certain standards for everyone involved to
understand. To perform this task, we write a small function and utilize the rename() utility of pandas to
complete this step. The rename() function takes a dict with keys representing the old column names while
values point to newer ones. We can also decide to modify the existing dataframe or generate a new one by
setting the inplace flag appropriately. The following snippet showcases this function.

def cleanup_column_names(df,rename dict={},do_inplace=True):
"""This function renames columns of a pandas dataframe
It converts column names to snake case if rename dict is not passed.

Args:
rename_dict (dict): keys represent old column names and values point to
newer ones
do_inplace (bool): flag to update existing dataframe or return a new one
Returns:

pandas dataframe if do_inplace is set to False, None otherwise

if not rename_dict:
return df.rename(columns={col: col.lower().replace(' ',' ")
for col in df.columns.values.tolist()},
inplace=do_inplace)
else:
return df.rename(columns=rename_dict,inplace=do_inplace)

Upon using this function on our dataframe in consideration, the output in Figure 3-11 is generated. Since
we do not pass any dict with old and new column names, the function updates all columns to snake case.

141

CHAPTER 3 " PROCESSING, WRANGLING, AND VISUALIZING DATA

date price product_id [quantity_purchased | serial_no |user_id |user_type
0| NaN 3021.06 | 417 13 1000 5958 NaN
1|NaN 1822.62|731 1 1001 5351 c
2|2016-07-01)542.36 |829 2 1002 5799 a
3|2016-01-20|2323.30 | 905 0 1003 5480 |(d
4|2016-01-19|243.43 (158 37 1004 5790 |[a

Figure 3-11. Dataset with columns renamed

For different algorithms, analysis and even visualizations, we often require only a subset of attributes
to work with. With pandas, we can vertically slice (select a subset of columns) in a variety of ways. pandas
provides different ways to suit different scenarios as we shall see in the following snippet.

print("Using Column Index::")
print(df[[3]].values[:, 0])

print("Using Column Name::")
print(df.quantity purchased.values)

print(Using Column Data Type::")
print(df.select dtypes(include=['float64']).values[:,0])

In this snippet, we have performed attribute selection in three different ways. The first method utilizes
column index number to get the required information. In this case, we wanted to work with only the field
quantity purchased, hence index number 3 (pandas columns are 0 indexed). The second method also
extracts data for the same attribute by directly referring to the column name in dot notation. While the first
method is very handy when working in loops, the second one is more readable and blends well when we
are utilizing the object oriented nature on Python. Yet there are times when we would need to get attributes
based on their data types alone. The third method makes use of select_dtypes() utility to get this job done.
It provides ways of both including and excluding columns based on data types alone. In this example we
selected the column(s) with data type as float (price column in our dataset). The output from this snippet is
as follows.

Using Column Index::
[13 1 2 ..., 230 17]

Using Column Name::
[13 1 2 ..., 230 17]

Using Column Data Type::
[3021.06 1822.62 542.36 ..., 1768.66 1848.5 1712.22]

142

CHAPTER 3 © PROCESSING, WRANGLING, AND VISUALIZING DATA

Selecting specific attributes/columns is one of the ways of subsetting a dataframe. There may be
requirements to horizontally splitting a dataframe as well. To work with a subset of rows, pandas provides
ways as outlined in the following snippet.

print("Select Specific row indices::")
print(df.iloc[[10,501,20]])

print(Excluding Specific Row indices::")
print(df.drop([0,24,51], axis=0).head())

print("Subsetting based on logical condition(s)::")
print(df[df.quantity purchased>25].head())

print("Subsetting based on offset from top (bottom)::")
print(df[100:].head() #df.tail(-100))

The first method utilizes the iloc (or integer index/location) based selection, we need to specify a list
of indices we need from the dataframe. The second method allows in removing/filtering out specific row
indices from the dataframe itself. This comes in handy in scenarios where rows not satisfying certain criteria
need to be filtered out. The third method showcases conditional logic based filtering of rows. The final
method filters based on offset from the top of the dataframe. A similar method, called tail(), can be used to
offset from bottom as well. The output generated is depicted in Figure 3-12.

Subsetting based on logical condition(s)::

date price |product_id |quantity_purchased | serial_no |user_id | user_type
4 |2016-01-19|243.43|158 37 1004 5790 a
5 |2016-01-16|274.26|754 33 1005 5820 a
7 |12016-01-19 | NaN 819 34 1007 5486 b
9 |2016-07-01|668.80|718 AN 1009 5510 d
10 | NaN 653.34 (649 27 1010 5563 d

Subsetting based on offset from top (bottom)::

date price |product_id | quantity_purchased | serial_no |user_id |user_type
100 (2016-01-30 | 1031.37 | 456 19 1100 5095 d
101|2016-01-17 [1860.96 | 150 27 1101 5492 b
102|2016-01-20|609.15 |842 14 1102 5601 d
103 |2016-01-20 | 2572.66 | 561 21 1103 -101 a
104 | NaN 1507.27 | 595 31 1104 5392 b

Figure 3-12. Different ways of subsetting rows

143

CHAPTER 3 " PROCESSING, WRANGLING, AND VISUALIZING DATA

Typecasting

Typecasting or converting data into appropriate data types, is an important part of cleanup and wrangling in
general. Often data gets converted into wrong data types while being extracted or converted from one form
to the other. Also different platforms and systems handle each data type differently and thus getting the right
data type is important. While starting the wrangling discussion, we checked upon the data types of all the
columns of our dataset. If you remember, the date column was marked as an object. Though it may not be an
issue if we are not going to work with dates, but in cases we need date and related attributes, having them as
objects/strings can pose problems. Moreover, it is difficult to handle date operations if they are available as
strings. To fix our dataframe, we use to_datetime() function from pandas. This is a very flexible utility that
allows us to set different attributes like date time formats, timezone, and so on. Since in our case, the values
are just dates, we use the function as follows with defaults.

df['date'] = pd.to_datetime(df.date)
print(df.dtypes)

Similarly, we can convert numeric columns marked as strings using to_numeric() along with direct
Python style typecasting as well. Upon checking the data types now, we clearly see the date column in the
correct data type of datetime64.

date datetime64[ns]
price float64
product_id int32
quantity purchased int32
serial no int32
user_id int32
user_type object

dtype: object

Transformations

Another common task with data wrangling is to transform existing columns or derive new attributes based
on requirements of the use case or data itself. To derive or transform column, pandas provide three different
utilities—apply(), applymap(), and map(). The apply() function is used to perform actions on the
whole object, depending upon the axis (default is on all rows). The applymap() and map() functions work
element-wise with map () coming from the pandas. Series hierarchy.

As an example to understand these three utilities, let’s derive some new attributes. First, let’s expand
the user_type attribute using the map () function. We write a small function to map each of the distinct
user_type codes into their corresponding user classes as follows.

def expand_user type(u_type):
if u_type in ['a','b']:
return 'new’
elif u_type == 'c':
return 'existing'
elif u_type == 'd":
return 'loyal existing'
else:
return 'error'

df['user class'] = df['user_type'].map(expand user type)

144

CHAPTER 3 © PROCESSING, WRANGLING, AND VISUALIZING DATA

Along the same lines, we use the applymap() function to perform another element-wise operation to get
the week of the transaction from the date attribute. For this case, we use the 1lambda function to get the job
done quickly. Refer to previous chapters for more details on 1lambda functions. The following snippet gets us
the week for each of the transactions.

df['purchase week'] = df[['date']].applymap(lambda dt:dt.week
if not pd.isnull(dt.week)
else 0)

Figure 3-13 depicts our dataframe with two additional attributes—user_class and purchase_week.

date price | product_ld | quantity_purchased | serial_no | user_Id | user_type |user_class |purchase_week
0| NaT 1075.80| 1023 14 1000 5067 NaN error 0
1) 2016-01-18 | 158.82 | 503 33 1001 5654 |a new 3
2- éﬂ16~10~01 587.60 .0 32 1002 .5651 i .d loyal_existing .39
3|2016-01-31 | 21.58 .a;n 40 1003 5951 ﬂd loyal_existing | 4
alnar | |16%022|245 a8 |100s 6755 |a |woyalewswnglo

Figure 3-13. Dataframe with derived attributes using map and applymap

Let’s now use the apply() function to perform action on the whole of the dataframe object itself. The
following snippet uses the apply() function to get range (maximum value to minimum value) for all numeric
attributes. We use the previously discussed select_dtypes and lambda function to complete the task.

df.select_dtypes(include=[np.number]).apply(lambda x: x.max()- x.min())

The output is a reduced pandas. Series object showcasing range values for each of the numeric columns.

price 5837.54
product_id 1099.00
quantity purchased 41.00
serial no 2001.00
user_id 6102.00
purchase_week 53.00

Imputing Missing Values

Missing values can lead to all sorts of problems when dealing with Machine Learning and Data Science related
use cases. Not only can they cause problems for algorithms, they can mess up calculations and even final
outcomes. Missing values also pose risk of being interpreted in non-standard ways as well leading to confusion
and more errors. Hence, imputing missing values carries a lot of weight in the overall data wrangling process.

One of the easiest ways of handling missing values is to ignore or remove them altogether from the
dataset. When the dataset is fairly large and we have enough samples of various types required, this option
can be safely exercised. We use the dropna() function from pandas in the following snippet to remove rows
of data where the date of transaction is missing.

print("Drop Rows with missing dates::")

df dropped = df.dropna(subset=["date'])
print("Shape::",df dropped.shape)

145

CHAPTER 3 " PROCESSING, WRANGLING, AND VISUALIZING DATA

The result is a dataframe with rows without any missing dates. The output dataframe is depicted in
Figure 3-14.

Drop Rows with missing dates::
Shape:: (970, 9)

date price product_Id | quantity_purchased | serial_no | user_Id | user_type |user_class |purchase week
1 |2016-01-18|158.82 |503 33 1001 5654 a new 3
2 |2016-10-01|587.60 |0 32 1002 5554 d loyal_existing | 39
3 |2016-01-31 |21.58 |831 40 1003 5951 d loyal_existing | 4
6 |2016-05-02|245.64 |461 12 1006 5065 a new 18
11]2016-01-02 | 1762.14 | 345 a7 1011 5972 a new 53

Figure 3-14. Dataframe without any missing date information

Often dropping rows is a very expensive and unfeasible option. In many scenarios, missing values are
imputed using the help of other values in the dataframe. One commonly used trick is to replace missing
values with a central tendency measure like mean or median. One may also choose other sophisticated
measures/statistics as well. In our dataset, the price column seems to have some missing data. We utilize the
fillna() method from pandas to fill these values with mean price value from our dataframe.

On the same lines, we use the ffil1() and bfill() functions to impute missing values for the
user_type attribute. Since, user_type is a string type attribute, we use a proximity based solution to handle
missing values in this case. The f111() and bfill() functions copy forward the data from the previous row
(forward fill) or copy the value from the next row (backward fill). The following snippet showcases the three
functions.

print("Fill Missing Price values with mean price::")
df_dropped['price'].fillna(value=np.round(df.price.mean(),decimals=2),
inplace=True)

print("Fill Missing user_type values with value from \
previous row (forward fill) ::")
df dropped['user_type'].fillna(method="ffill"',inplace=True)

print("Fill Missing user_type values with value from \
next row (backward fill) ::")
df _dropped['user type'].fillna(method="bfill",inplace=True)

Apart from these ways, there are certain conditions where a record is not much of use if it has more than
a certain threshold of attribute values missing. For instance, if in our dataset a transaction has less than three
attributes as non-null, the transaction might almost be unusable. In such a scenario, it might be advisable to
drop that data point itself. We can filter out such data points using the function dropna() with the parameter
thresh set to the threshold of non-null attributes. More details are available on the official documentation page.

146

CHAPTER 3 © PROCESSING, WRANGLING, AND VISUALIZING DATA

Handling Duplicates

Another issue with many datasets is the presence of duplicates. While data is important and more the
merrier, duplicates do not add much value per se. Even more, duplicates help us identify potential areas of
errors in recording/collecting the data itself. To identify duplicates, we have a utility called duplicated()
that can applied on the whole dataframe as well as on a subset of it. We may handle duplicates by fixing the
errors and use the duplicated() function, although we may also choose to drop the duplicate data points
altogether. To drop duplicates, we use the method drop_duplicates(). The following snippet showcases
both functions discussed here.

df dropped[df dropped.duplicated(subset=["serial no'])]
df _dropped.drop duplicates(subset=['serial no'],inplace=True)

The output of identifying a subset of a dataframe having duplicate values for the field serial nois
depicted in Figure 3-15. The second line in the previous snippet simply drops those duplicates.

date price |product_Id | quantity_purchased | serlal_no | user_id | user_type | user_class | purchase_week
41 |2016-08-01 | 2774.02| 388 40 [-1 5848 |a new 3
60 |2016-12-01 |1202.85 | 728 17 [-1 554 |a new a8
102|2016-01-16 [173.71 [725 1 [-1 5404 |c existing |2
107 | 2016-01-25 | 1618.98 | 540 2 [-1 6000 |a new 4
118 2016-01-16 | 1201.00 | 742 35 [-1 5130 |a new 2

Figure 3-15. Dataframe with duplicate serial_no values

Handling Categorical Data

As discussed in the section “Data Description,” categorical attributes consist of data that can take a limited
number of values (not always though). Here in our dataset, the attribute user_type is a categorical variable
that can take only a limited number of values from the allowed set {a,b,c,d}. The algorithms that we would be
learning and utilizing in the coming chapters mostly work with numerical data and categorical variables may
pose some issues. With pandas, we can handle categorical variables in a couple of different ways. The first
one is using the map () function, where we simply map each value from the allowed set to a numeric value.
Though this may be useful, this approach should be handled with care and caveats. For instance, statistical
operations like addition, mean, and so on, though syntactically valid, should be avoided for obvious reasons
(more on this in coming chapters). The second method is to convert the categorical variable into indicator
variables using the get_dummies () function. The function is simply a wrapper to generate one hot encoding
for the variable in consideration. One hot encoding and other encodings can be handled using libraries like
sklearn as well (we will see more examples in coming chapters).

The following snippet showcases both the methods discussed previously usingmap() and get_dummies ().

using map to dummy encode

type map={'a':0,'b"':1,"'c':2,"d":3,np.NAN: -1}
df['encoded user type'] = df.user_type.map(type map)
print(df.head())

using get dummies to one hot encode
print(pd.get dummies(df,columns=['user type']).head())

147

CHAPTER 3 " PROCESSING, WRANGLING, AND VISUALIZING DATA

The output is generated as depicted in Figure 3-16 and Figure 3-17. Figure 3-16 shows the output of
dummy encoding. With the map () approach we keep the number of features in check, yet have to be careful
about the caveats mentioned in this section.

date price | product id | quantity purchased | serial no |user Id |user_type |user class | purchase week |encoded user type

|o|NaT 1075.89| 1023 14 1000 5067 |NaN orror 0 -
| 1|2016-01-18| 158,82 | 500 0 1001 5654 |a new 3 0
Ez 2016-10-01 | 587.60 |0 a2 1002 5564 |a loyal_existing | 39 3
|a|2016-01-31 [21.58 |8m 0 1003 5081 |a loyal_existing 4 3
|4 NaT 1630.22 | 245 3% 1004 6786 |a loyal_existing | 0 3

Figure 3-16. Dataframe with user_type attribute dummy encoded

The second image, Figure 3-17, showcases the output of one hot encoding the user_type attribute.
We discuss more these approaches in detail in Chapter 4, when we discuss feature engineering.

user_Id |user_class |purchase week |user_type_a|user_type b|user type c|user_type d

5067 error 0 0.0 0.0 0.0 0.0
5654 new 3 1.0 0.0 0.0 0.0
5554 loyal_existing | 39 0.0 0.0 0.0 1.0
5951 loyal_existing | 4 0.0 0.0 0.0 1.0
5755 loyal_existing | 0 0.0 0.0 0.0 1.0

Figure 3-17. Dataframe with user_type attribute one hot encoded

Normalizing Values

Attribute normalization is the process of standardizing the range of values of attributes. Machine learning
algorithms in many cases utilize distance metrics, attributes or features of different scales/ranges which
might adversely affect the calculations or bias the outcomes. Normalization is also called feature scaling.
There are various ways of scaling/normalizing features, some of them are rescaling, standardization

(or zero-mean unit variance), unit scaling and many more. We may choose a normalization technique
based upon the feature, algorithm and use case at hand. This will be clearer when we work on use cases.
We also cover feature scaling strategies in detail in Chapter 4: Feature Engineering and Selection. The
following snippet showcases a quick example of using a min-max scaler, available from the preprocessing
module of sklearn, which rescales attributes to the desired given range.

df normalized = df.dropna().copy()

min_max_scaler = preprocessing.MinMaxScaler()

np_scaled = min_max_scaler.fit transform(df normalized['price'].reshape(-1,1))
df normalized['normalized price'] = np_scaled.reshape(-1,1)

Figure 3-18 showcases the unscaled price values and the normalized price values that have been scaled
toarange of [0, 1].

148

http://dx.doi.org/10.1007/978-1-4842-3207-1_4
http://dx.doi.org/10.1007/978-1-4842-3207-1_4

CHAPTER 3 * PROCESSING, WRANGLING, AND VISUALIZING DATA

price normalized_price

1312.22(0.217750

706.62 |0.116814

760.75 |0.125835

L7 T I I 4 T]

2445.60(0.406652

10| 1862.96|0.309543

Figure 3-18. Original and normalized values for price

String Manipulations

Raw data presents all sorts of issues and complexities before it can be used for analysis. Strings are another
class of raw data which needs special attention and treatment before our algorithms can make sense out
of them. As mentioned while discussing wrangling methods for categorical data, there are limitations and
issues while directly using string data in algorithms.

String data representing natural language is highly noisy and requires its own set of steps for wrangling.
Though most of these steps are use case dependent, it is worth mentioning them here (we will cover these in
detail along with use cases for better clarity). String data usually undergoes wrangling steps such as:

e Tokenization: Splitting of string data into constituent units. For example, splitting
sentences into words or words into characters.

e Stemming and lemmatization: These are normalization methods to bring words into
their root or canonical forms. While stemming is a heuristic process to achieve the
root form, lemmatization utilizes rules of grammar and vocabulary to derive the root.

e Stopword Removal: Text contains words that occur at high frequency yet
do not convey much information (punctuations, conjunctions, and so on). These
words/phrases are usually removed to reduce dimensionality and noise from data.

Apart from the three common steps mentioned previously, there are other manipulations like POS
tagging, hashing, indexing, and so on. Each of these are required and tuned based on the data and problem
statement on hand. Stay tuned for more details on these in the coming chapters.

Data Summarization

Data summarization refers to the process of preparing a compact representation of raw data at hand.

This process involves aggregation of data using different statistical, mathematical, and other methods.

Summarization is helpful for visualization, compressing raw data, and better understanding of its attributes.
The pandas library provides various powerful summarization techniques to suit different requirements.

We will cover a couple of them here as well. The most widely used form of summarization is to group values

based on certain conditions or attributes. The following snippet illustrates one such summarization.

print(df['price'][df['user type']=="a'].mean())
print(df['purchase week'].value counts())

149

CHAPTER 3 " PROCESSING, WRANGLING, AND VISUALIZING DATA

The first statement calculates the mean price for all transactions by user_type, while the second one
counts the number of transactions per week. Though these calculations are helpful, grouping data based on
attributes helps us get a better understanding of it. The groupby () function helps us perform the same, as
shown in the following snippet.

print(df.groupby(['user class'])['quantity purchased'].sum())

This statement generates a tabular output representing sum of quantities purchased by each
user_class. The output is generated is as follows.

user_class

existing 4830
loyal existing 5515
new 10100

Name: quantity purchased, dtype: int32

The groupby () function is a powerful interface that allows us to perform complex groupings and
aggregations. In the previous example we grouped only on a single attribute and performed a single aggregation
(i.e., sum). With groupby () we can perform multi-attribute groupings and apply multiple aggregations across
attributes. The following snippet showcases three variants of groupby () usage and their corresponding outputs.

variant-1: multiple aggregations on single attribute
df.groupby(['user class'])['quantity purchased'].agg([np.sum, np.mean,
np.count_nonzero])

variant-2: different aggregation functions for each attribute
df.groupby(['user class','user type']).agg({ price’:np.mean,
'quantity purchased':np.max})

variant-3

df.groupby(['user class','user type']).agg({'price':{"'total price':np.sum,
'mean_price':np.mean,
'variance price':np.std,
"count' :np.count_nonzero},
'quantity purchased':np.sum})

The three different variants can be explained as follows.
Variant 1: Here we apply three different aggregations on quantity purchased which is grouped by
user_class (see Figure 3-19).

sum |mean count_nonzero
user_class
existing 4830 |20.466102|236
loyal_existing | 5515 |20.811321 |265
new 10100|21.581197 | 468

Figure 3-19. Groupby with multiple aggregations on single attribute

150

CHAPTER 3 © PROCESSING, WRANGLING, AND VISUALIZING DATA

Variant 2: Here, we apply different aggregation functions on two different attributes. The agg()
function takes a dictionary as input containing attributes as keys and aggregation functions as values (see
Figure 3-20).

price quantity_purchased
user_class user_type
existing c 2242.485042 | 41
loyal_existing | d 2277.297887 | 41
a 2246.811982 | 41
new
b 2292.995104 | 41

Figure 3-20. Groupby with different aggregation functions for different attributes

Variant 3: Here, we do a combination of variants 1 and 2, i.e., we apply multiple aggregations on the
price field while applying only a single one on quantity purchased. Again a dictionary is passed, as shown
in the snippet. The output is shown in Figure 3-21.

price quantity_purchased

count |total_price | mean_price |variance_price |sum

user class user_type

existing c 236.0 |529226.47 |2242 485042 |1458.283022 |4830
loyal_existing | d 265.0 |603483.94 |2277.297887 | 1565.646118 5515

a 227.0 |510026.32 |2246.811982 |1538.380005 |4891
new b 241.0 |552611.82 |2292.995104|1563.058020 |5209

Figure 3-21. Groupby with showcasing a complex operation

Apart from groupby () based summarization, other functions such as pivot(), pivot table(),
stack(), unstack(), crosstab(), and melt() provide capabilities to reshape the pandas dataframe as
per requirements. A complete description of these methods with examples is available as part of pandas
documentation at https://pandas.pydata.org/pandas-docs/stable/reshaping.html. We encourage you
to go through the same.

Data Visualization

Data Science is a type of storytelling that involves data as its lead character. As Data Science practitioners we
work with loads of data which undergo processing, wrangling, and analysis day in and day out for various
use cases. Augmenting this storytelling with visual aspects like charts, graphs, maps and so on not just helps
in improving the understanding of data (and in turn the use case/business problem) but also provides
opportunities to find hidden patterns and potential insights.

151

https://pandas.pydata.org/pandas-docs/stable/reshaping.html

CHAPTER 3 " PROCESSING, WRANGLING, AND VISUALIZING DATA

Data visualization is thus the process of visually representing information in the form of charts, graphs,
pictures, and so on for a better and universally consistent understanding.

We mention universally consistent understanding to point out a very common issue with human
languages. Human languages are inherently complex and depending upon the intentions and skills of the
writer, the audience may perceive the written information in different ways (causing all sorts of problems).
Presenting data visually thus provides us with a consistent language to present and understand information
(though this as well is not free from misinterpretation yet it provides certain consistency).

In this section, we begin by utilizing pandas and its capabilities to visually understand data through
different visualizations. We will then introduce visualizations from the matplotlib perspective.

Note Data visualization in itself is a popular and deep field of study utilized across domains. This chapter
and section only presents a few topics to get us started. This is by no means a comprehensive and detailed
guide on data visualization. Interested readers may explore further, though topics covered here and in coming
chapters should be enough for most common tasks related to visualizations.

Visualizing with Pandas

Data visualization is a diverse field and a science on its own. Though the selection of the type of visualization
highly depends on the data, the audience, and more, we will continue with our product transaction dataset
from the previous section to understand and visualize.

Just as a quick recap, the dataset at hand consisted of transactions indicating purchase of products by
certain users. Each transaction had the following attributes.

e Date: The date of the transaction

e Price: The price of the product purchased

e Product ID: Product identification number

e Quantity Purchased: The quantity of product purchased in this transaction
e Serial No: The transaction serial number

e User ID: Identification number of user performing the transaction

e User Type: The type of user

We wrangle our dataset to clean up the column names, convert attributes to correct data types, and
derive additional attributes of user_class and purchase_week, as discussed in the previous section.

pandas is a very popular and powerful library, examples of which we have been seeing throughout the
chapter. Visualization is another important and widely used feature of pandas. It exposes its visualization
capabilities through the plot interface and closely follows matplotlib style visualization syntax.

Line Charts

We begin with first looking at the purchase patterns of a user who has a maximum number of transactions
(we leave this as an exercise for you to identify such a user). A trend is best visualized using the line chart.
Simply subsetting the dataframe on the required fields, the plot() interface charts out a line chart by
default. The following snippet shows the price-wise trend for the given user.

df[df.user id == max_user id][['price']].plot(style="blue")
plt.title('Price Trends for Particular User')

152

CHAPTER 3 © PROCESSING, WRANGLING, AND VISUALIZING DATA

The plt alias is for matplotlib.pyplot. We will discuss this more in the coming section, for now
assume we require this to add-on enhancements to plots generated by pandas. In this case we use it to add a
title to our plot. The plot generated is depicted in Figure 3-22.

Price Trends for Particular User
6000
— price
5000
4000
3000
2000

1000

200 400 600 800
Figure 3-22. Line chart showing price trend for a user

Though we can see a visual representation of prices of different transactions by this user, it is not
helping us much. Let’s now use the line chart again to understand how his/her purchase trends over
time (remember we have date of transactions available in the dataset). We use the same plot interface by
subsetting the dataframe to the two required attributes. The following code snippet outlines the process.

df[df.user_id == max_user id].plot(x='date',y="price',style="blue")
plt.title('Price Trends for Particular User Over Time')

This time, since we have two attributes, we inform pandas to use the date as our x-axis and price as

the y-axis. The plot interface handles datetime data types with élan as is evident in the following output
depicted in Figure 3-23.

153

CHAPTER 3 " PROCESSING, WRANGLING, AND VISUALIZING DATA

Price Trends for Particular User Over Time
6000

— price

5000
4000
3000
2000
1000

0

L %) h o) q ve) 9 Q
@,\6,0 @\6.0 (}9\6‘(\" @\6.0 @\69 ‘?9\6&' 10\6'0 (}9\69 ,29\6‘\
date

Figure 3-23. Price trend over time for a given user

This time our visualization clearly helps us see the purchase pattern for this user. Though we can
discuss about insights from this visualization at length, a quick inference is clearly visible. As the plot shows,
the user seems to have purchased high valued items in the starting of the year, with a decreasing trend as
the year has progressed. Also, the number of transactions in the beginning of the year are more and closer as
compared to rest of the year. We can correlate such details with more data to identify patterns and behaviors.
We shall cover more such aspects in coming chapters.

Bar Plots

Having seen trends for a particular user, let’s take a look at our dataset at an aggregated level. Since we
already have a derived attribute called the purchase_week, let’s use it to aggregate quantities purchased by
users over time. We first aggregate the data at a week level using the groupby () function and then aggregate
the attribute quantity purchased. The final step is to plot the aggregation on a bar plot. The following
snippet helps us plot this information.

df[['purchase week',
"quantity purchased']].groupby('purchase week').sum().plot.barh(
color="orange")
plt.title('Quantities Purchased per Week')

We use the barh() function to prepare a horizontal bar chart. It is similar to a standard bar () plot in

terms of the way it represents information. The difference is in the orientation of the plots. Figure 3-24 shows
the generated output.

154

CHAPTER 3 © PROCESSING, WRANGLING, AND VISUALIZING DATA

Quantities Purchased per Week
: | quantity_purchased

purchase_week

NobaodIoRBLRBRES

0 500 1000 1500 2000 2500 3000 3500

Figure 3-24. Bar plot representing quantities purchased at a weekly level

Histograms

One of the most important aspects of exploratory data analysis (EDA) is to understand distribution of
various numerical attributes of a given dataset. The simplest and the most common way of visualizing a
distribution is through histograms. We plot the price distribution of the products purchased in our dataset as
shown in the following snippet.

df.price.hist(color="green")
plt.title('Price Distribution')

We use the hist() function to plot the price distribution in a single line of code. The output is depicted
in Figure 3-25.

Price Distribution

200

150

100

0 2000 4000 6000 8000

Figure 3-25. Histogram representing price distribution

155

CHAPTER 3 " PROCESSING, WRANGLING, AND VISUALIZING DATA

The output shown in Figure 3-25 clearly shows a skewed and tailed distribution. This information will
be useful while using such attributes in our algorithms. More will be clear when we work on actual use cases.

We can take this a step further and try to visualize the price distribution on a per week basis. We do so
by using the parameter by in the hist() function. This parameter helps us group data based on the attribute
mentioned, as by and then generates a subplot for each such grouping. In our case, we group by purchase
week as shown in the following snippet.

df[['price', 'purchase week']].hist(by="purchase week' ,sharex=True)

The output depicted in Figure 3-26 showcases distribution of price on a weekly basis with the highest
bin clearly marked in a different color.

2 3 4 5
100
100 100 25 J
0 TR ppa o 0 Mlimnsass. 0 Murtluia.u.. 0 Bn.lua
9 13 17 18
50 50 20
10 J
0 Manlla.a.l. 0 Blane. on. 0 JIn.. . laas 0 1l =s -
22 26 50 31
50 2% 50
0 Banalnnn.. 0 (INNAN] e 0 il .. 0 | NN .
39 44 48 53
20
2 25 10 25
0 ll.l.'ll.. O e B0hnln.n 0 II'I- - 0 Al ..
o o o o o

o

S
B 3B

Figure 3-26. Histograms on a weekly basis

5000
5000

Pie Charts

One of the most commonly sought after questions while understanding the data or extracting insights is to
know which type is contributing the most. To visualize percentage distribution, pie charts are best utilized.
For our dataset, the following snippet helps us visualize which user type purchased how much.

class_series = df.groupby('user class').size()
class_series.name = 'User Class Distribution'
class_series.plot.pie(autopct="%.2f")
plt.title('User Class Share')

plt.show()

156

CHAPTER 3 © PROCESSING, WRANGLING, AND VISUALIZING DATA

The previous snippet uses groupby () to extract a series representing number of transactions on a per
user_class level. We then use the pie() function to plot the percentage distribution. We use the autopct
parameter to annotate the plot with actual percentage contribution by each use_class. Figure 3-27 depicts
the output pie chart.

User Class Share

byal_existing

existing

User Class Distribution

ew

Figure 3-27. Pie chart representing user class transaction distribution

The plot in Figure 3-27 clearly points out that new users are having more than 50% of the total
transaction share while existing and loyal existing ones complete the remaining. We do not recommend
using pie charts especially when you have more than three or four categories. Use bar charts instead.

Box Plots

Box plots are important visualizations that help us understand quartile distribution of numerical data. A
box plot or box-whisker plot is a concise representation to help understand different quartiles, skewness,
dispersion, and outliers in the data.

157

CHAPTER 3 " PROCESSING, WRANGLING, AND VISUALIZING DATA

We'll look at the attributes quantity purchased and purchase_week using box plots. The following
snippet generates the required plot for us.

df[['quantity purchased','purchase week']].plot.box()
plt.title('Quantity and Week value distribution')

Now, we'll look at the plots generated (see Figure 3-28). The bottom edge of the box in box plot
marks the first quartile, while the top one marks the third. The line in the middle of the box marks the
second quartile or the median. The top and bottom whiskers extending from the box mark the range of
values. Outliers are marked beyond the whisker boundaries. In our example, for quantity purchased, the
median is quite close to the middle of the box while the purchase week has it toward the bottom (clearly
pointing out the skewness in the data). You are encouraged to read more about box plots for an in-depth
understanding at http://www.physics.csbsju.edu/stats/box2.html, http://www.stat.yale.edu/
Courses/1997-98/101/boxplot.htm.

Quantity and Week value distribution

10
I L

quantity_purchased purchase_week

Figure 3-28. Box plots using pandas

Scatter Plots

Scatter plots are another class of visualizations usually used to identify correlations or patterns between
attributes. Like most visualization we have seen so far, scatter plots are also available through the plot()
interface of pandas.

To understand scatter plots, we first need to perform a couple of steps of data wrangling to get our data
into required shape. We first encode the user class with dummy encoding (as discussed in the previous
section) using map() and then getting mean price and count of transactions on a per week per user_class
level using groupby (). The following snippet helps us get our dataframe.

uclass_map = {'new': 1, 'existing': 2, 'loyal_existing': 3,'error':0}
df['enc_uclass'] = df.user_class.map(uclass map)

158

http://www.physics.csbsju.edu/stats/box2.html
http://www.stat.yale.edu/Courses/1997-98/101/boxplot.htm
http://www.stat.yale.edu/Courses/1997-98/101/boxplot.htm

CHAPTER 3 © PROCESSING, WRANGLING, AND VISUALIZING DATA

bubble df = df[['enc_uclass',
'purchase_week',
"price’, 'product_id']].groupby(['purchase week',
enc_uclass']).agg(
{'price':'mean’,
"product_id':'count'}
).reset_index()

bubble df.rename(columns={'product id':'total transactions'},inplace=True)

purchase_week |enc_uclass | price total_transactions
02 1 2380.846349 |63
12 2 1984.570645 |31
2|2 3 2167.079286 | 28
3|3 1 2620.948333 |84
4|3 2 2757.447632 |38
5(3 3 2394.359250 |40
64 1 2347.251364 |88
74 2 2315.305185 |27
8 3 2322.400213 | 47
9 1 2384.101333|30

Figure 3-29. Dataframe aggregated on a per week per user_class level

Figure 3-29 showcases the resultant dataframe. Now, let’s visualize this data using a scatter plot. The
following snippet does the job for us.

bubble df.plot.scatter(x="purchase week',

y="price")
plt.title('Purchase Week Vs Price ')
plt.show()

159

CHAPTER 3 " PROCESSING, WRANGLING, AND VISUALIZING DATA

This generates the plot in Figure 3-30 showcasing an almost random spread of data across weeks and
average price with some slight concentration in the top left of the plot.

Purchase Week Vs Price

3500 -

3000 . . - :

2500 * _ - -t . .
® 5 e . . 5 .
£ 2000 . . .
o = e

1500 S

1000 - -

500 : :
0 10 20 30 40 50

purchase_week

Figure 3-30. Scatter plot showing spread of data across purchase_week and price

Scatter plot also provides us the capability to visualize more than the basic dimensions. We can plot
third and fourth dimensions using color and size. The following snippet helps us understand the spread with
color denoting the user_class while size of the bubble indicates number of transaction.

bubble df.plot.scatter(x="purchase week',

y="price',

c=bubble df['enc_uclass'],

s=bubble df['total transactions']*10)
plt.title('Purchase Week Vs Price Per User Class Based on Tx')

160

CHAPTER 3 © PROCESSING, WRANGLING, AND VISUALIZING DATA

The parameters are self-explanatory—c represents color while s stands for size of the bubble. Such plots
are also called bubble charts. The output generated is shown in Figure 3-31.

Purchase Week Vs Price Per User Class Based on Tx

3500

3000 g ®

2500 L
‘® o : |® o
2000 é o ®

price

1500
1000

500

0 10 20 30 40 50
purchase_week

Figure 3-31. Scatter plot visualizing multi dimensional data

In this section, we utilized pandas to plot all sorts of visualizations. These were some of the most widely
used visualizations and pandas provides a lot of flexibility to do more with these. Also, there is an extended
list of plots that can be visualized using pandas. The complete information is available on the pandas
documentation.

Visualizing with Matplotlib

matplotlib is a popular plotting library. It provides interfaces and utilities to generate publication quality
visualizations. Since its first version in 2003 until today, matplotlib is being continuously improved by

its active developer community. It also forms the base and inspiration of many other plotting libraries. As
discussed in the previous section, pandas along with SciPy (another popular Python library for scientific
computing) provide wrappers over matplotlib implementations for ease of visualizing data.

matplotlib provides two primary modules to work with, pylab and pyplot. In this section, we will
concentrate only on pyplot module (the use of pylab is not much encouraged). The pyplot interface is an
object oriented interface that favors explicit instantiations as opposed to pylab’s implicit ones.

In the previous section, we briefly introduced different visualizations and saw a few ways of tweaking
them as well. Since pandas visualizations are derived from matplotlib itself, we will cover additional
concepts and capabilities of matplotlib. This will enable you to not only use matplotlib with ease but also
provide with tricks to improve visualizations generated using pandas.

161

CHAPTER 3 " PROCESSING, WRANGLING, AND VISUALIZING DATA

Figures and Subplots

First things first. The base of any matplotlib style visualization begins with figure and subplot objects. The
figure module helps matplotlib generate the plotting window object and its associated elements. In short,
itis the top-level container for all visualization components. In matplotlib syntax, a figure is the top-most
container and, within one figure, we have the flexibility to visualize multiple plots. Thus, subplots are the
plots within the high-level figure container.

Let’s get started with a simple example and the required imports. We will then build on the example to
better understand the concept of figure and subplots. The following snippet imports the pyplot module of
matplotlib and plots a simple sine curve using numpy to generate x and y values.

import numpy as np
import matplotlib.pyplot as plt

sample plot
x = np.linspace(-10, 10, 50)
y=np.sin(x)

plt.plot(x,y)

plt.title('Sine Curve using matplotlib')
plt.xlabel('x-axis")
plt.ylabel('y-axis")

The pyplot module exposes methods such as plot () to generate visualizations. In the example, with
plt.plot(x, y), matplotlib is working behind the scenes to generate the figure and axes objects to
output the plot in Figure 3-32. For completeness’ sake, the statements plt.title(), plt.xlabel(),and so
on provide ways to set the figure title and axis labels, respectively.

Sine Curve using matplotlib

1.0
0.5 1
0
’Iﬂ‘, 0.0 -
-
-0.5
-1.0 1
-10 -5 0 5 10
x-axis

Figure 3-32. Sample plot

162

CHAPTER 3 © PROCESSING, WRANGLING, AND VISUALIZING DATA

Now that we have a sample plot done, let’s look at how different objects interact in the matplotlib
universe. As mentioned, the figure object is the top-most container of all elements. Before complicating
things, we begin by first plotting different figures, i.e., each figure containing only a single plot. The following
snippet plots a sine and a cosine wave in two different figures using numpy and matplotlib.

first figure

plt.figure(1)

plt.plot(x,y)
plt.title('Figl: Sine Curve')
plt.xlabel('x-axis")
plt.ylabel('y-axis")

second figure

plt.figure(2)

y=np.cos(x)

plt.plot(x,y)

plt.title('Fig2: Cosine Curve')
plt.xlabel('x-axis")
plt.ylabel('y-axis")

The statement p1t.figure() creates an instance of type Figure. The number passed in as a parameter
is the figure identifier, which is helpful while referring to the same figure in case multiple exist. The rest of
the statements are similar to our sample plot with pyplot always referring to the current figure object to
draw to. Note that the moment a new figure is instantiated, pyplot refers to the newly created objects unless
specified otherwise. The output generated is shown in Figure 3-33.

163

CHAPTER 3 " PROCESSING, WRANGLING, AND VISUALIZING DATA

Figl: Sine Curve

1.0 1
0.5 1
0
X 0.0
ES
-0.5
-1.0 1
-10 -5 0 5 10
X-axis
Fig2: Cosine Curve
1.0 1
0.5 1
0
% 0.01
=S
-0.5
-=1.01
-10 = 0 5 10
x-axis

Figure 3-33. Multiple figures using matplotlib

We plot multiple figures while telling the data story for a use case. Yet, there are cases where we need
multiple plots in the same figure. This is where the concept of subplots comes into the picture. A subplot
divides a figure into a grid of specified rows and columns and also provides interfaces to interact with
plotting elements. Subplots can be generated using a few different ways and their use depends on personal
preferences and use case demands. We begin with the most intuitive one, the add_subplot() method. This
method is exposed through the figure object itself. Its parameters help define the grid layout and other
properties. The following snippet generates four subplots in a figure.

y = np.sin(x)

figure obj = plt.figure(figsize=(8, 6))
axl = figure obj.add subplot(2,2,1)
ax1.plot(x,y)

ax2
ax3

figure obj.add subplot(2,2,2)
figure obj.add subplot(2,2,3)

164

CHAPTER 3 © PROCESSING, WRANGLING, AND VISUALIZING DATA

ax4 = figure obj.add subplot(2,2,4)
ax4.plot(x+10,y)

This snippet first defines a figure object using p1t.figure(). We then get an axes object pointing to
the first subplot generated using the statement figure obj.add subplot(2,2,1). This statement is actually
dividing the figure into two rows and two columns. The last parameter (value 1) is pointing to the first
subplot in this grid. The snippet is simply plotting the sine curve in the top-left subplot (identified as 2,2,1)
and another sine curve shifted by 10 units on the x-axis in the fourth subplot (identified as 2,2,4). The output
generated is shown in Figure 3-34.

1.0- 1-0
0.81
0.5 1
0.6
0.0
0.4
-0.5 1
0.2
-1.01, : - 0.0 ; ; ;
-10 0 10 0.00 025 050 0.75 1.00
1.0 i
0.81
0.51
0.6 1
0.0
0.4 1
0.5 -
0.21
0.0 : : : ~1.01, : :
0.00 0.25 050 0.75 100 O 10 20

Figure 3-34. Subplots using add_subplot method

The second method for generating subplots is through the pyplot module directly. The pyplot module
exposes a method subplots(), which returns figure object and a list of axes object, each of which is pointing
to a subplot in the layout mentioned in the subplots() parameters. This method is useful when we have an
idea about how many subplots will be required. The following snippet showcases the same.

fig, ax_list = plt.subplots(2,1,sharex=True, figsize=(8, 6))
y= np.sin(x)
ax_list[o0].plot(x,y)

y= np.cos(x)
ax_list[1].plot(x,y)

The statement plt.subplots(2,1,sharex=True) does three things in one go. It first of all generates
a figure object which is then divided into 2 rows and 1 column each (i.e., two subplots in total). The two
subplots are returned in the form of a list of axes objects. The final and the third thing is the sharing of
x-axis, which we achieve using the parameter sharex. This sharing of x-axis allows all subplots in this figure

165

CHAPTER 3 " PROCESSING, WRANGLING, AND VISUALIZING DATA

to have the same x-axis. This allows us to view data on the same scale along with aesthetic improvements.
The output is depicted in Figure 3-35 showcasing sine and cosine curves on the same x-axis.

1.0 1
0.5 1
0.0 1
—0.5 1

-1.0 -

1.0 1

0.5 1

0.0 -

T T T T T T

-100 -75 -50 -25 00 25 50 75 10.0

Figure 3-35. Subplots using subplots() method

Another variant is the subplot() function, which is also exposed through the pyplot module directly.
This closely emulates the add_subplot() method of the figure object. You can find examples listed in the
code for this chapter. Before moving onto other concepts, we quickly touch on the subplot2grid() function,
also exposed through the pyplot module. This function provides capabilities similar to the ones already
discussed along with finer control to define grid layout where subplots can span an arbitrary number of
columns and rows. The following snippet showcases a grid with subplots of different sizes.

y = np.abs(x)
z = X**¥2

plt.subplot2grid((4,3), (0, 0), rowspan=4, colspan=2)
plt.plot(x, y,'b',x,z,'r")

ax2 = plt.subplot2grid((4,3), (0, 2),rowspan=2)
plt.plot(x, y,'b")
plt.setp(ax2.get xticklabels(), visible=False)

plt.subplot2grid((4,3), (2, 2), rowspan=2)
plt.plot(x, z,'r")

166

CHAPTER 3 © PROCESSING, WRANGLING, AND VISUALIZING DATA

The subplot2grid() function takes a number of parameters, explained as follows:
e shape: A tuple representing rows and columns in the grid as (rows, columns).
e loc: A tuple representing the location of a subplot. This parameter is 0 indexed.
e rowspan: This parameter represents the number of rows the subplot covers.
e colspan: This parameter represents the number of columns the subplot extends to.

The output generated in Figure 3-36 by the snippet has one subplot covering four rows and two
columns containing two functions. The other two subplots cover two rows and one column each.

100 10 -
sl
! | s}
4
60 | | 2t
00 —,
40 80
&0 | |
20 140 |
20-.
o5 = 0 5 00050 5 10

Figure 3-36. Subplots using subplot2grid()

Plot Formatting

Formatting a plot is another important aspect of storytelling and matplotlib provides us plenty of features
here. From changing colors to markers and so on, matplotlib provides easy-to-use intuitive interfaces.

We begin with the color attribute, which is available as part of the plot () interface. The color attribute
works on the RGBA specifications, allowing us to provide alpha and color values as strings (red, green, and
so on), as single letters (1, g, and so on) and even as hex values. More details are available on the matplotlib
documentation at https://matplotlib.org/api/colors_api.html.

The following example and output depicted in Figure 3-37 illustrates how easy it is to set color and
alpha properties for plots.

y = x

color

ax1 = plt.subplot(321)
plt.plot(x,y,color="green")
axl.set title('Line Color")

alpha
ax2 = plt.subplot(322,sharex=ax1)
alpha = plt.plot(x,y)

167

https://matplotlib.org/api/colors_api.html

CHAPTER 3 " PROCESSING, WRANGLING, AND VISUALIZING DATA

alpha[0].set alpha(0.3)
ax2.set_title('Line Alpha")
plt.setp(ax2.get yticklabels(), visible=False)

Line Color
10 . -

T

-10

Line Alpha

-10 -5 0 5 10 -10 -5 0

Figure 3-37. Setting color and alpha properties of a plot

10

Along the same lines, we also have options to use different shapes to mark data points as well as
different styles to plot lines. These options come in handy while representing different attributes/classes
onto the same plot. The following snippet and output depicted in Figure 3-38 showcase the same.

marker

markers -> '+', 'o', '*', 's', ',;', "', etc
ax3 = plt.subplot(323,sharex=ax1)
plt.plot(x,y,marker="*")

ax3.set_title('Point Marker')

linestyle

linestyles -> '-','--","-.", ":", 'steps'
ax4 = plt.subplot(324,sharex=ax1)
plt.plot(x,y,linestyle="--")
ax4.set_title('Line Style')

plt.setp(ax4.get yticklabels(), visible=False)

168

CHAPTER 3 © PROCESSING, WRANGLING, AND VISUALIZING DATA

10 Point Marker Line Style
I ' ' ' ' ' /!
'
'
'
/
5] I / N
'4
/
'
/!
'
1] 4 L /
!
!
/!
/!
'
Ca] | ’
'
's
/
'
s
=10 i i i i i i

=10 -5 0 5 0 -10 -5 0 5 10

Figure 3-38. Setting marker and line style properties of a plot

Though there are many more fine tuning options available, you are encouraged to go through the
documentation for detailed information. We conclude the formatting section with final two tricks related to
line width and a shorthand notation to do it all quickly, as shown in the following snippet.

line width

ax5 = plt.subplot(325,sharex=ax1)
line = plt.plot(x,y)

line[0].set linewidth(3.0)
ax5.set_title('Line Width")

combine linestyle

ax6 = plt.subplot(326,sharex=ax1)
plt.plot(x,y, 'b*")

ax6.set_title('Styling Shorthand')
plt.setp(ax6.get yticklabels(), visible=False)

This snippet uses the line object returned by the plot () function to set the line width. The second part

of the snippet showcases the shorthand notation to set the line color and data point marker in one go as, b”.
The output shown in Figure 3-39 helps show this effect.

169

CHAPTER 3 © PROCESSING, WRANGLING, AND VISUALIZING DATA

10 Line Width Styling Shorthand

-10 L L L ; : .
-10 -5 0 5 100 -10 -5 0 5 10

Figure 3-39. Example to show line_width and shorthand notation

Legends

A graph legend is a key that helps us map color/shape or other attributes to different attributes being
visualized by the plot. Though in most cases matplotlib does a wonderful job at preparing and showing the
legends, there are times when we require a finer level of control.

The legend of a plot can be controlled using the legend() function, available through the pyplot
module directly. We can set the location, size, and other formatting attributes through this function. The
following example shows the legend being placed in the best possible location.

plt.plot(x,y,'g",label="y=x"2")
plt.plot(x,z,'b:",label="y=x")
plt.legend(loc="best")
plt.title('Legend Sample')

170

CHAPTER 3 © PROCESSING, WRANGLING, AND VISUALIZING DATA

100 ' Legend 'Samp[e

— y=x"2
80 | e Y=X A

-20 - ' -
-10 -5 0 5 10

Figure 3-40. Sample plot with legend

One of the primary goals of matplotlib is to provide publication quality visualizations. Matplotlib
supports LaTEX style formatting of the legends to cleanly visualize mathematical symbols and equations.
The $ symbol is used to mark the start and end of LaTEX style formatting. The same is shown in the following
snippet and output plot (see Figure 3-41).

legend with latex formatting
plt.plot(x,y,'g",label="$y = x"2$")
plt.plot(x,z, 'b:"',linewidth=3,1label="$y = x*2$")
plt.legend(loc="best",fontsize="'x-large")
plt.title('Legend with $LaTEX$ formatting')

100 Legend with LaTEX formatting

— y==z

i gt

20 _

e
MTLLLALL
‘tanu|||.||-.|. .
1L

of '

MTILLLLLL

Wi
MTILLLAY
TLLLALY
TTLLLLLL

-20 - ' -
-10 -5 0 5 10

Figure 3-41. Sample plot with LaTEX formatted legend

171

CHAPTER 3 " PROCESSING, WRANGLING, AND VISUALIZING DATA

Axis Controls

The next feature from matplotlib is the ability to control the x- and y-axes of a plot. Apart from basic
features like setting the axis labels and colors using the methods set_xlabel() and set_ylabel(), there
are finer controls available as well. Let’s first see how to add a secondary y-axis. There are many scenarios
when we plot data related to different features (having values at different scales) on the same plot. To get a
proper understanding, it usually helps to have both features on different y-axis (each scaled to respective
range). To get additional y-axis, we use the function twinx() exposed through the axes object. The
following snippet outlines the scenario.

axis controls

secondary y-axis

fig, ax1 = plt.subplots()

ax1.plot(x,y,'g")

axl.set_ylabel(r"primary y-axis", color="green")

ax2 = axl.twinx()

ax2.plot(x,z,'b:",linewidth=3)
ax2.set_ylabel(r"secondary y-axis", color="blue")

plt.title('Secondary Y Axis')

At first it may sound odd to have a function named twinx() to generate secondary y-axis. Smartly,
matplotlib has such a function to point out the fact that the additional y-axis would share the same x-axis
and hence the name twinx(). On the same lines, additional x-axis is obtained using the function twiny().
The output plot is depicted in Figure 3-42.

Secondary Y Axis

100 - 10

80
-1}
v >
5 B g
= &
:‘g =]
£ 40} &
& b
v
20.
0 { i
-10 -5 0 5 10

Figure 3-42. Sample plot with secondary y-axis

172

CHAPTER 3 © PROCESSING, WRANGLING, AND VISUALIZING DATA

By default, matplotlib identifies the range of values being plotted and adjusts the ticks and the range
of both x- and y-axes. It also provides capability to manually set these through the axis () function. Through
this function, we can set the axis range using predefined keywords like tight, scaled, and equal, along with
passing a list such that it marks the values as [xmin, xmax, ymin, ymax]. The following snippet shows how to
adjust axis range manually.

manual

y = np.log(x)

z = np.log2(x)
w = np.log10(x)

plt.plot(x,y, 'r",x,2,"'g",x,w,'b")
plt.axis([0,2,-1,2])
plt.title('Manual Axis Range')

The output in Figure 3-43 showcases the plot generated without any axis adjustments on the left, while
the right one shows the axis adjustment as done in the previous snippet.

3 Default Axis Ticks 20 Manual Axis Range
3 15
2
10
1
05
0
0.0
-1
-2 -0.5
-3 : =-1.0
0 2 4 6 8 10 0.0

Figure 3-43. Plots showcasing default axis and manually adjusted axis

Now that we have seen how to set the axis range, we will quickly touch on setting the ticks or axis
markers manually as well. For axis ticks, we have two separate functions available, one for setting the
range of ticks while the second sets the tick labels. The functions are intuitively named as set_ticks() and
set_ticklabels(), respectively. In the following example, we set the ticks to be marked for the x-axis while
for y-axis we set both the tick range and the labels using the appropriate functions.

Manual ticks
plt.plot(x, y)
ax = plt.gca()

ax.xaxis.set ticks(np.arange(-2, 2, 1))

ax.yaxis.set ticks(np.arange(0, 5))
ax.yaxis.set ticklabels(["min", 2, 4, "max"])

plt.grid(True)
plt.title("Manual ticks on the x-axis")

173

CHAPTER 3 " PROCESSING, WRANGLING, AND VISUALIZING DATA

The output is a plot with x-axis having labels marked only between -2 and 1, while y-axis has a range of
0 to 5 with labels changed manually. The output plot is shown in Figure 3-44.

Manual ticks on the x-axis

-2 =1 0 1

Figure 3-44. Plot showcasing axes with manual ticks

Before we move on to next set of features/capabilities, it is worth noting that with matplotlib, we also
get the capability of scaling the axis based on the data range in a standard manner apart from manually
setting it (as seen previously). The following is a quick snippet scaling the y-axis on a log scale. The output
is shown in Figure 3-45.

scaling

plt.plot(x, y)

ax = plt.gca()

values: log, logit, symlog
ax.set_yscale("log")
plt.grid(True)
plt.title("Log Scaled Axis")

Log Scaled Axis

10! , .

100}

107 |

0%, 2 7 6 8 10

Figure 3-45. Plot showcasing log scaled y-axis

174

CHAPTER 3 © PROCESSING, WRANGLING, AND VISUALIZING DATA

Annotations

The text () interface from the pyplot module exposes the annotation capabilities of matplot1ib. We can
annotate any part of the figure/plot/subplot using this interface. It takes the x and y coordinates, the text to
be displayed, alignment, and fontsize parameters as inputs to place the annotations at the desired place on
the plot. The following snippet annotates the minima of a parabolic plot.

annotations

y - X**z

min_x = 0

min_y = min_x**2

plt.plot(x, y, "b-", min_x, min_y, "
plt.axis([-10,10,-25,100])

ro")

plt.text(0, 60, "Parabola\n$y = x"2$", fontsize=15, ha="center")

plt.text(min_x, min_y+2, "Minima", ha="center")

plt.text(min_x, min_y-6, "(%0.1f, %0.1f)"%(min_x, min_y), ha='center',color="gray")
plt.title("Annotated Plot")

The text() interface provides many more capabilities and formatting features. You are encouraged
to go through the official documentation and examples for details on this. The output plot showcasing the
annotated parabola is shown in Figure 3-46.

100 Annotated Plot

Parabola

9
y= *°

injma

-10 5 0 5 10

Figure 3-46. Plot showcasing annotations

175

CHAPTER 3 © PROCESSING, WRANGLING, AND VISUALIZING DATA

Global Parameters

To maintain consistency, we usually try to keep the plot sizes, fonts, and colors the same across the visual
story. Setting each of these attributes creates complexity and difficulties in maintaining the code base. To
overcome these issues, we can set formatting settings globally, as shown in the following snippet.

global formatting params

params = {'legend.fontsize': 'large’,
'figure.figsize': (10, 10),
'axes.labelsize': 'large’,
'axes.titlesize':'large’,
'xtick.labelsize':'large’,
'ytick.labelsize':'large'}

plt.rcParams.update(params)

Once set using rcParams. update(), the attributes provided in the params dictionary are applied to
every plot generated. You are encouraged to apply these setting and generate the plots discussed in this
section again to understand the difference.

Python Visualization Ecosystem

The matplotlib library is a very powerful and popular visualization/plotting library without any doubts.
It provides most of the tools and tricks required to plot any type of data with capability to control even the
finest elements.

Yetmatplotlib leaves a lot more to be desired by even pro-users. Being a low-level AP], it requires a lot
of boilerplate code, interactivity is limited, and styling and other formatting defaults seem dated.

To address these issues and provide high-level interfaces and ability to work with current Python
ecosystem, the Python universe has quite a few visualization libraries to choose from. Some of the most
popular and powerful ones are bokeh, seaborn, ggplot, and plotly. Each of these libraries builds on the
understanding and feature set of matplotlib, while providing their own set of features and easy-to-use
wrappers to plug the gaps.

You are encouraged to explore these libraries and understand the differences. We will introduce some
of these in the coming chapters as and when required. Though different, most libraries work on concepts
similar to matplotlib and hence the learning curve is shorter if you're well versed in matplotlib.

Summary

This chapter covered quite a lot of ground in terms of understanding, processing, and wrangling data. We
covered major data formats like flat files (CSV, JSON, XML, HTML, etc.), and used standard libraries to
extract/collect data. We touched on standard data types and their importance in the overall process of data
science. Major part of this chapter covered data wrangling tasks to transform, clean, and process data so as
to bring it into usable form. Though the techniques were explained using the pandas library, the concepts
are universal and applied in most Data Science related use cases. You may use these techniques as pointers
that can be easily applied using different libraries and programming/scripting languages. We covered major
plots using sample datasets describing their usage. We also touched on the basics and the powerful tricks of
matplotlib. We strongly encourage you to read the referred links for in-depth understanding. This chapter
covers the initial steps in the CRISP DM model of data collection, processing, and visualization. In the
coming chapters, we build on these concepts and apply them for solving specific real-world problems.

Stay tuned!

176

CHAPTER 4

Feature Engineering and Selection/

Building Machine Learning systems and pipelines take significant effort, which is evident from the
knowledge you gained in the previous chapters. In the first chapter, we presented some high-level
architecture for building Machine Learning pipelines. The path from data to insights and information is
not an easy and direct one. It is tough and also iterative in nature involving data scientists and analysts to
reiterate through several steps multiple times to get to the perfect model and derive correct insights. The
limitation of Machine Learning algorithms is the fact that they can only understand numerical values as
inputs. This is because, at the heart of any algorithm, we usually have multiple mathematical equations,
constraints, optimizations and computations. Hence it is almost impossible for us to feed raw data into any
algorithm and expect results. This is where features and attributes are extremely helpful in building models
on top of our data.

Building machine intelligence is a multi-layered process having multiple facets. In this book, so far,
we have already explored how you can retrieve, process, wrangle, and visualize data. Exploratory data
analysis and visualizations are the first step toward understanding your data better. Understanding your data
involves understanding the complete scope encompassing your data including the domain, constraints,
caveats, quality and available attributes. From Chapter 3, you might remember that data is comprised of
multiple fields, attributes, or variables. Each attribute by itself is an inherent feature of the data. You can then
derive further features from these inherent features and this itself forms a major part of feature engineering.
Feature selection is another important task that comes hand in hand with feature engineering, where the
data scientist is tasked with selecting the best possible subset of features and attributes that would help in
building the right model.

An important point to remember here is that feature engineering and selection is not a one-time
process which should be carried out in an ad hoc manner. The nature of building Machine Learning systems
is iterative (following the CRISP-DM principle) and hence extracting and engineering features from the
dataset is not a one-time task. You may need to extract new features and try out multiple selections each
time you build a model to get the best and optimal model for your problem. Data processing and feature
engineering is often described to be the toughest task or step in building any Machine Learning system by
data scientists. With the need of both domain knowledge as well as mathematical transformations, feature
engineering is often said to be both an art as well as a science. The obvious complexities involve dealing
with diverse types of data and variables. Besides this, each Machine Learning problem or task needs
specific features and there is no one solution fits all in the case of feature engineering. This makes feature
engineering all the more difficult and complex.

Hence we follow a proper structured approach in this chapter covering the following three major areas
in the feature engineering workflow. They are mentioned as follows.

e Feature extraction and engineering
e Feature scaling

e Feature selection

© Dipanjan Sarkar, Raghav Bali and Tushar Sharma 2018 177
D. Sarkar et al., Practical Machine Learning with Python, https://doi.org/10.1007/978-1-4842-3207-1_4

https://doi.org/10.1007/978-1-4842-3207-1_4
http://dx.doi.org/10.1007/978-1-4842-3207-1_3

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

This chapter covers essential concepts for all the three major areas mentioned above. Techniques for
feature engineering will be covered in detail for diverse data types including numeric, categorical, temporal,
text and image data. We would like to thank our good friend and fellow data scientist, Gabriel Moreira for
helping us with some excellent compilations of feature engineering techniques over these diverse data
types. We also cover different feature scaling methods typically used as a part of the feature engineering
process to normalize values preventing higher valued features from taking unnecessary prominence. Several
feature selection techniques like filter, wrapper, and embedded methods will also be covered. Techniques
and concepts will be supplemented with sufficient hands-on examples and code snippets. Remember to
check out the relevant code under Chapter 4 in the GitHub repository at https://github.com/dipanjanS/
practical-machine-learning-with-python which contains necessary code, notebooks, and data. This will
make things easier to understand, help you gain enough knowledge to know which technique should be
used in which scenario and thus help you get started on your own journey toward feature engineering for
building Machine Learning models!

Features: Understand Your Data Better

The essence of any Machine Learning model is comprised of two components namely, data and algorithms.
You might remember the same from the Machine Learning paradigm which we introduced in Chapter 1.

Any Machine Learning algorithm is at essence a combination of mathematical functions, equations and
optimizations which are often augmented with business logic as needed. These algorithms are not intelligent
enough to usually process raw data and discover latent patterns from the same which would be used to train
the system. Hence we need better data representations for building Machine Learning models, which are also
known as data features or attributes. Let’s look at some important concepts associated with data and features
in this section.

Data and Datasets

Data is essential for analytics and Machine Learning. Without data we are literally powerless to implement
any intelligent system. The formal definition of data would be a collection or set of qualitative and/or
quantitative variables containing values based on observations. Typically data is usually measured and
collected from various observations. This is then stored it is raw form which can then be processed further
and analyzed as required. Typically in any analytics or Machine Learning system, you might need multiple
sources of data and processed data from one component can be fed as raw data to another component for
further processing. Data can be structured having definite rows and columns indicating observations and
attributes or unstructured like free textual data.

A dataset can be defined as a collection of data. Typically this indicates data present in the form of flat
files like CSV files or MS Excel files, relational database tables or views, or even raw data two-dimensional
matrices. Sample datasets which are quite popular in Machine Learning are available in the scikit-learn
package to quickly get started. The sklearn.datasets module has these sample datasets readily available
and other utilities pertaining to loading and handling datasets. You can find more details in this link
http://scikit-learn.org/stable/datasets/index.html#datasets tolearn more about the toy datasets
and best practices for handling and loading data. Another popular resource for Machine Learning based
datasets is the UC Irvine Machine Learning repository which can be found here http://archive.ics.uci.
edu/ml/index.php and this contains a wide variety of datasets from real-world problems, scenarios and
devices. In fact the popular Machine Learning and predictive analytics competitive platform Kaggle also
features some datasets from UCI and other datasets pertaining to various competitions. Feel free to check
out these resources and we will in fact be using some datasets from these resources in this chapter as well as
in subsequent chapters.

178

http://dx.doi.org/10.1007/978-1-4842-3207-1_4
https://github.com/dipanjanS/practical-machine-learning-with-python
https://github.com/dipanjanS/practical-machine-learning-with-python
http://dx.doi.org/10.1007/978-1-4842-3207-1_1
http://scikit-learn.org/stable/datasets/index.html#datasets
http://scikit-learn.org/stable/datasets/index.html#datasets
http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/index.php

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

Features

Raw data is hardly used to build any Machine Learning model, mostly because algorithms can’t work with
data which is not properly processed and wrangled in a desired format. Features are attributes or properties
obtained from raw data. Each feature is a specific representation on top of the raw data. Typically, each
feature is an individual measurable attribute which usually is depicted by a column in a two dimensional
dataset. Each observation is depicted by a row and each feature will have a specific value for an observation.
Thus each row typically indicates a feature vector and the entire set of features across all the observations
forms a two-dimensional feature matrix also known as a feature set. Features are extremely important
toward building Machine Learning models and each feature represents a specific chunk of representation
and information from the data which is used by the model. Both quality as well as quantity of features
influences the performance of the model.

Features can be of two major types based on the dataset. Inherent raw features are obtained directly
from the dataset with no extra data manipulation or engineering. Derived features are usually what we
obtain from feature engineering where we extract features from existing data attributes. A simple example
would be creating a new feature Age from an employee dataset containing Birthdate by just subtracting their
birth date from the current date. The next major section covers more details on how to handle, extract, and
engineer features based on diverse data types.

Models

Features are better representations of underlying raw data which act as inputs to any Machine Learning
model. Typically a model is comprised of data features, optional class labels or numeric responses for
supervised learning and a Machine Learning algorithm. The algorithm is chosen based on the type of
problem we want to solve after converting it into a specific Machine Learning task. Models are built after
training the system on data features iteratively till we get the desired performance. Thus, a model is basically
used to represent relationships among the various features of our data.

Typically the process of modeling involves multiple major steps. Model building focuses on training
the model on data features. Model tuning and optimization involves tuning specific model parameters,
known as hyperparameters and optimizing the model to get the best model. Model evaluation involves
using standard performance evaluation metrics like accuracy to evaluate model performance. Model
deployment is usually the final step where, once we have selected the most suitable model, we deploy it live
in production which usually involves building an entire system around this model based on the CRISP-DM
methodology. Chapter 5 will focus on these aspects in further detail.

Revisiting the Machine Learning Pipeline

We covered the standard Machine Learning pipeline in detail in Chapter 1, which was based on the CRISP-
DM standard. Let’s refresh our memory by looking at Figure 4-1, which depicts our standard generic
Machine Learning pipeline with the major components identified with the various building blocks.

179

http://dx.doi.org/10.1007/978-1-4842-3207-1_5
http://dx.doi.org/10.1007/978-1-4842-3207-1_1

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

Datasets Data Retrieval
Data Feature Feature
Processing & Extraction & Scaling & ; Model
Wrangling Engineering Selection Modeling Evaluation & D:'W" &
5 jonitoring
Tuning
Data Preparation

L Re-iterate till satisfactory model performance

Figure 4-1. Revisiting our standard Machine Learning pipeline
The figure clearly depicts the main components in the pipeline, which you should already be

well-versed on by now. These components are mentioned once more for ease of understanding.

e Dataretrieval

e Data preparation

e Modeling

e Model evaluation and tuning

e Model deployment and monitoring

Our area of focus in this chapter falls under the blocks under “Data Preparation”. We already covered
processing and wrangling data in Chapter 3 in detail. Here, we will be focusing on the three major steps
essential toward handling data features. These are mentioned as follows.

1. Feature extraction and engineering
2. Feature scaling
3. Feature selection

These blocks are highlighted in Figure 4-1 and are essential toward the process of transforming
processed data into features. By processed, we mean the raw data, after going through necessary pre-
processing and wrangling operations. The sequence of steps that are usually followed in the pipeline for
transforming processed data into features is depicted in a more detailed view in Figure 4-2.

(AR
Feature
Processed Feature Feature
Extraction & —P~ —» — Features
Data Engineering Scaling Selection

Figure 4-2. A standard pipeline for feature engineering, scaling, and selection

180

http://dx.doi.org/10.1007/978-1-4842-3207-1_3

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

It is quite evident that based on the sequence of steps depicted in the figure, features are first crafted
and engineering, necessary normalization and scaling is performed and finally the most relevant features
are selected to give us the final set of features. We will cover these three components in detail in subsequent
sections following the same sequence as depicted in the figure.

Feature Extraction and Engineering

The process of feature extraction and engineering is perhaps the most important one in the entire Machine
Learning pipeline. Good features depicting the most suitable representations of the data help in building
effective Machine Learning models. In fact, more than often it’s not the algorithms but the features that
determine the effectiveness of the model. In simple words, good features give good models. A data scientist
approximately spends around 70% to 80% of his time in data processing, wrangling, and feature engineering
for building any Machine Learning model. Hence it’s of paramount importance to understand all aspects
pertaining to feature engineering if you want to be proficient in Machine Learning.

Typically feature extraction and feature engineering are synonyms that indicate the process of using a
combination of domain knowledge, hand-crafted techniques and mathematical transformations to convert
data into features. Henceforth we will be using the term feature engineering to refer to all aspects concerning
the task of extracting or creating new features from data. While the choice of Machine Learning algorithm
is very important when building a model, more than often, the choice and number of features tend to have
more impact toward the model performance. In this section, we will be looking to answer some questions
such as the why, what, and how of feature engineering to get a more in-depth understanding toward feature
engineering.

What Is Feature Engineering?

We already informally explained the core concept behind feature engineering, where we use specific
components from domain knowledge and specific techniques to transform data into features. Data in
this case is raw data after necessary pre-processing and wrangling, which we have mentioned earlier. This
includes dealing with bad data, imputing missing values, transforming specific values, and so on. Features
are the final end result from the process of feature engineering, which depicts various representations of the
underlying data.

Let’s now look at a couple of definitions and quotes relevant to feature engineering from several
renowned people in the world of data science! Renowned computer and data scientist Andrew Ng talks
about Machine Learning and feature engineering.

“Coming up with features is difficult, time-consuming, requires expert knowledge. Applied
Machine Learning’ is basically feature engineering.”
—Prof. Andrew Ng

This basically reinforces what we mentioned earlier about data scientists spending close to 80% of
their time in engineering features which is a difficult and time-consuming process, requiring both domain
knowledge and mathematical computations. Besides this, practical or applied Machine Learning is mostly
feature engineering because the time taken in building and evaluating models is considerably less than the
total time spent toward feature engineering. However, this doesn’t mean that modeling and evaluation are
any less important than feature engineering.

181

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

We will now look at a definition of feature engineering by Dr. Jason Brownlee, data scientist and ML
practitioner who provides a lot of excellent resources over at http://machinelearningmastery.com with
regard to Machine Learning and data science. Dr. Brownlee defines feature engineering as follows.

“Feature engineering is the process of transforming raw data into features that better
represent the underlying problem to the predictive models, resulting in improved model
accuracy on unseen data.”

—Dr. Jason Brownlee

Let’s spend some more time on this definition of feature engineering. It tells us that the process of
feature engineering involves transforming data into features taking into account several aspects pertaining
to the problem, model, performance, and data. These aspects are highlighted in this definition and are
explained in further detail as follows.

Raw data: This is data in its native form after data retrieval from source. Typically
some amount of data processing and wrangling is done before the actual process of
feature engineering.

Features: These are specific representations obtained from the raw data after the
process of feature engineering.

The underlying problem: This refers to the specific business problem or use-
case we want to solve with the help of Machine Learning. The business problem is
typically converted into a Machine Learning task.

The predictive models: Typically feature engineering is used for extracting features
to build Machine Learning models that learn about the data and the problem to be
solved from these features. Supervised predictive models are widely used for solving
diverse problems.

Model accuracy: This refers to model performance metrics that are used to evaluate
the model.

Unseen data: This is basically new data that was not used previously to build or train
the model. The model is expected to learn and generalize well for unseen data based
on good quality features.

Thus feature engineering is the process of transforming data into features to act as inputs for Machine
Learning models such that good quality features help in improving the overall model performance. Features
are also very much dependent on the underlying problem. Thus, even though the Machine Learning task
might be same in different scenarios, like classification of e-mails into spam and non-spam or classifying
handwritten digits, the features extracted in each scenario will be very different from the other.

By now you must be getting a good grasp on the idea and significance of feature engineering. Always
remember that for solving any Machine Learning problem, feature engineering is the key! This in fact is
reinforced by Prof. Pedro Domingos from the University of Washington, in his paper titled, “A Few Useful
Things to Know about Machine Learning” available at http://homes.cs.washington.edu/~pedrod/papers/
cacml2. pdf, which tells us the following.

“At the end of the day, some Machine Learning projects succeed and some fail. What makes
the difference? Easily the most important factor is the features used.”

182

—Prof. Pedro Domingos

http://machinelearningmastery.com/
http://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
http://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

Feature engineering is indeed both an art and a science to transform data into features for feeding
into models. Sometimes you need a combination of domain knowledge, experience, intuition, and
mathematical transformations to give you the features you need. By solving more problems over time, you
will gain the experience you need to know what features might be best suited for a problem. Hence do not be
overwhelmed, practice will make you master feature engineering with time. The following list depicts some
examples of engineering features.

e Deriving a person’s age from birth date and the current date

e Getting the average and median view count of specific songs and music videos
e Extracting word and phrase occurrence counts from text documents

e Extracting pixel information from raw images

e Tabulating occurrences of various grades obtained by students

The final quote to whet your appetite on feature engineering is from renowned Kaggler, Xavier Conort.
Most of you already know that tough Machine Learning problems are often posted on Kaggle regularly which
is usually open to everyone. Xavier’s thoughts on feature engineering are mentioned as follows.

“The algorithms we used are very standard for Kagglers. ...We spent most of our efforts in
feature engineering. ...We were also very careful to discard features likely to expose us to
the risk of over-fitting our model.”
—Xavier Conort

This should give you a good idea what is feature engineering, the various aspects surrounding it and
avery basic introduction into why do we really need feature engineering. In the following section, we will
expand more on why we need feature engineering, its benefits and advantages.

Why Feature Engineering?

We have defined feature engineering in the previous section and also touched upon the basics pertaining to
the importance of feature engineering. Let’s now look at why we need feature engineering and how can it be
an advantage for us when we are building Machine Learning models and working with data.

e Better representation of data: Features are basically various representations
of the underlying raw data. These representations can be better understood by
Machine Learning algorithms. Besides this, we can also often easily visualize
these representations. A simple example would be to visualize the frequent word
occurrences of a newspaper article as opposed to being totally perplexed as to what
to do with the raw text!

e Better performing models: The right features tend to give models that outperform
other models no matter how complex the algorithm is. In general if you have the
right feature set, even a simple model will perform well and give desired results. In
short, better features make better models.

o Essential for model building and evaluation: We have mentioned this numerous
times by now, raw data cannot be used to build Machine Learning models. Get
your data, extract features, and start building models! Also on evaluating model
performance and tuning the models, you can reiterate over your feature set to choose
the right set of features to get the best model.

183

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

e More flexibility on data types: While is it definitely easier to use numeric data types
directly with Machine Learning algorithms with little or no data transformations,
the real challenge is to build models on more complex data types like text, images,
and even videos. Feature engineering helps us build models on diverse data types
by applying necessary transformations and enables us to work even on complex
unstructured data.

e Emphasis on the business and domain: Data scientists and analysts are usually
busy in processing, cleaning data and building models as a part of their day to day
tasks. This often creates a gap between the business stakeholders and the technical/
analytics team. Feature engineering involves and enables data scientists to take
a step back and try to understand the domain and the business better, by taking
valuable inputs from the business and subject matter experts. This is necessary to
create and select features that might be useful for building the right model to solve
the problem. Pure statistical and mathematical knowledge is rarely sufficient to solve
a complex real-world problem. Hence feature engineering emphasizes to focus on
the business and the domain of the problem when building features.

This list, though not an exhaustive one, gives us a pretty good insight into the importance of feature
engineering and how it is an essential aspect of building Machine Learning models. The importance of the
problem to be solved and the domain is also pretty important in feature engineering.

How Do You Engineer Features?

There are no fixed rules for engineering features. It involves using a combination of domain knowledge,
business constraints, hand-crafted transformations and mathematical transformations to transform the
raw data into desired features. Different data types have different techniques for feature extraction. Hence
in this chapter, we focus on various feature engineering techniques and strategies for the following major
data types.

e Numeric data

e (Categorical data
e Textdata

e Temporal data

e Image data

Subsequent sections in this chapter focus on dealing with these diverse data types and specific
techniques which can be applied to engineer features. You can use them as a reference and guidebook for
engineering features from your own datasets in the future.

Another aspect into feature engineering has recently gained prominence. Here, you do not use hand-
crafted features but, make the machine itself try to detect patterns and extract useful data representations
from the raw data, which can be used as features. This process is also known as auto feature generation.
Deep Learning has proved to be extremely effective in this area and neural network architectures like
convolutional neural networks (CNNs), recurrent neural networks (RNNs), and Long Short Term Memory
networks (LSTMs) are extensively used for auto feature engineering and extraction. Let’s dive into the world
of feature engineering now with some real-world datasets and examples.

184

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

Feature Engineering on Numeric Data

Numeric data, fields, variables, or features typically represent data in the form of scalar information that
denotes an observation, recording, or measurement. Of course, numeric data can also be represented as a
vector of scalars where each specific entity in the vector is a numeric data point in itself. Integers and floats
are the most common and widely used numeric data types. Besides this, numeric data is perhaps the easiest
to process and is often used directly by Machine Learning models. If you remember we have talked about
numeric data previously in the “Data Description” section in Chapter 3.

Even though numeric data can be directly fed into Machine Learning models, you would still need to
engineer features that are relevant to the scenario, problem, and domain before building a model. Hence
the need for feature engineering remains. Important aspects of numeric features include feature scale and
distribution and you will observe some of these aspects in the examples in this section. In some scenarios,
we need to apply specific transformations to change the scale of numeric values and in other scenarios we
need to change the overall distribution of the numeric values, like transforming a skewed distribution to a
normal distribution.

The code used for this section is available in the code files for this chapter. You can load feature_
engineering_numeric.py directly and start running the examples or use the jupyter notebook, Feature
Engineering on Numeric Data.ipynb, for a more interactive experience. Before we begin, let’s load the
following dependencies and configuration settings.

In [1]: import pandas as pd
..: import matplotlib.pyplot as plt
.: import matplotlib as mpl
: import numpy as np
¢ import scipy.stats as spstats

..t %matplotlib inline
.t mpl.style.reload library()
: mpl.style.use('classic')
: mpl.rcParams['figure.facecolor'] = (1, 1, 1, 0)
: mpl.rcParams['figure.figsize'] = [6.0, 4.0]
: mpl.rcParams['figure.dpi'] = 100

Now that we have the initial dependencies loaded, let’s look at some ways to engineer features from
numeric data in the following sections.

Raw Measures

Just like we mentioned earlier, numeric features can be directly fed to Machine Learning models often since
they are in a format which can be easily understood, interpreted, and operated on. Raw measures typically
indicated using numeric variables directly as features without any form of transformation or engineering.
Typically these features can indicate values or counts.

185

http://dx.doi.org/10.1007/978-1-4842-3207-1_3

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

Values

Usually, scalar values in its raw form indicate a specific measurement, metric, or observation belonging to

a specific variable or field. The semantics of this field is usually obtained from the field name itself or a data
dictionary if present. Let’s load a dataset now about Pokémon! This dataset is also available on Kaggle. If you
do not know, Pokémon is a huge media franchise surrounding fictional characters called Pokémon which
stands for pocket monsters. In short, you can think of them as fictional animals with superpowers! The
following snippet gives us an idea about this dataset.

In [2]: poke df = pd.read csv('datasets/Pokemon.csv', encoding="utf-8")
...t poke df.head()

out[2]:

Name | Type 1| Type 2| Total | HP | Attack | Defense | Sp. Atk | Sp. Def| Speed | Generatlon | Legendary
0|1 | Bulbasaur Grass |Poison |318 |45 (49 49 65 65 45 1 False
1|2 Ivysaur Grass |Polson 405 |60 |62 63 80 80 60 1 False
2|3 | Venusaur Grass |Poison | 525 |80 |82 83 100 100 80 1 False
3|3 | VenusaurMega Venusaur | Grass | Poison |625 |80 100 123 122 120 80 1 Failse
414 | Charmander Fire NaN 308 |39 |52 43 60 50 65 1 False

Figure 4-3. Raw data from the Pokémon dataset

If you observe the dataset depicted in Figure 4-3, there are several attributes there which represent
numeric raw values which can be used directly. The following snippet depicts some of these features with
more emphasis.

In [3]: poke df[['HP', 'Attack', 'Defense']].head()

Out[3]:

HP Attack Defense
0 45 49 49
1 60 62 63
2 80 82 83
3 80 100 123
4 39 52 43

You can directly use these attributes as features that are depicted in the previous dataframe. These
include each Pokémon’s HP (Hit Points), Attack, and Defense stats. In fact, we can also compute some basic
statistical measures on these fields using the following code.

In [4]: poke df[['HP', 'Attack', 'Defense']].describe()
Out[4]:

HP Attack Defense
count 800.000000 800.000000 800.000000
mean 69.258750 79.001250 73.842500
std 25.534669 32.457366 31.183501
min 1.000000 5.000000 5.000000
25% 50.000000 55.000000 50.000000
50% 65.000000 75.000000 70.000000
75% 80.000000 100.000000 90.000000
max 255.000000 190.000000 230.000000

186

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

We can see multiple statistical measures like count, average, standard deviation, and quartiles for each

of the numeric features in this output. Try plotting their distributions if possible!

Counts

Raw numeric measures can also indicate counts, frequencies and occurrences of specific attributes. Let’s
look at a sample of data from the million-song dataset, which depicts counts or frequencies of songs that
have been heard by various users.

In [5]:

popsong_df = pd.read csv('datasets/song views.csv', encoding='utf-8")
: popsong_df.head(10)

user_ld

song_ld

titie

listen_count

b6b799134a204bd928eal14c243ddad6d0bed 81

SOBONKR12A58A7ATEQ

You're The One

bd1ead730ac1416b6717b9c18859d55791318d4d

SOBONKR12A58A7ATEO

You're The One

4c84359a164b161496d05282707 cecbd50adbicd

SOBONKR12A58A7ATEQ

You're The One

779b5808593756abb6f{7586177c966022668b06

SOBONKR12A58A7TATEO

You're The One

dd88ead41605a63d91c37a214127e3100e85e42d

SOBONKR12A58A7TATEO

You're The One

6810359a211cedb0d15c98d88017281db7919bcé

SOBONKR12AS58ATATEO

You're The One

cl|lo|le|lo|leo| N

116a4c95d63623a967 edf2f3456c90ebbl964e6f

SOBONKR12A58A7ATEQ

You're The One

45544491cclcdc0b0803¢341201a6287ed4e3018

SOBONKR12AS58A7TATEO

You're The One

@701a24d9b6c5015ac37ab28462caB82470e27ctb

SOBONKR12A58A7A7ED

You're The One

O o N0 |s|WIN|=|O0

edc8b7b11d592a3b69c3d823a742e1a064abec9s

SOBONKR12A58A7ATEQ

You're The One

Figure 4-4.

Song listen counts as a numeric feature

We can see that the 1isten_count field in the data depicted in Figure 4-4 can be directly used as a
count/frequency based numeric feature.

Binarization

Often raw numeric frequencies or counts are not necessary in building models especially with regard to

methods applied in building recommender engines. For example if I want to know if a person is interested
or has listened to a particular song, I do not need to know the total number of times he/she has listened to
the same song. I am more concerned about the various songs he/she has listened to. In this case, a binary
feature is preferred as opposed to a count based feature. We can binarize our listen_count field from our
earlier dataset in the following way.

In [6]: watched = np.array(popsong df['listen count'])

: watched[watched >= 1]

=1

...t popsong_df['watched'] = watched

You can also use scikit-learn’s Binarizer class here from its preprocessing module to perform the
same task instead of numpy arrays, as depicted in the following code.

187

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

In [7]: from sklearn.preprocessing import Binarizer

.: bn = Binarizer(threshold=0.9)
...t pd watched = bn.transform([popsong_df['listen count']])[0]
. popsong_df['pd watched'] = pd watched

: popsong_df.head(11)

user_ld

song_Id

title

listen_count

watched

pd_watched

b6b799134a204bd928ea014c243ddad6d0bed sl

SOBONKR12AS8ATATEO

You're The One

2

-

1

-

b41ead730ac1416b6717bIcIB859d556791318ddd

SOBONKR12A58ATATEO

You're The One

4cB4359a164b161496d05282707 cecbd50adbfcd

SOBONKR12A58A7TATEO

You're The One

779b5808593756abb617586177 966022668006

SOBONKR12AS8ATATED

You're The One

ddB8eaddl605a63d91c3Ta214127e3100e85e42d

SOBONKR12AS8ATATED

You're The One

68103592211 cedb0d15c98d88017281db7919bch

SOBONKR12A58ATATED

You're The One

cloejle|le|o

c|lojlo|lo|o

116a4c95d63623a967ed1213456c90ebbI964e61

SOBONKR12A58A7ATED

You're The One

=y

45544491 ccledcOb0803c341201a628Ted4e3018

SOBONKR12A58ATATED

You're The One

e701a24d9b6c5915ac37ab28462ca82470e27cb

SOBONKR12AS8ATATED

You're The One

- - T T

edc8b7b11d592a3b69c3d823a742e1a064abec9s

SOBONKR12AS8ATATEO

You're The One

-
o

b41d1c374d093ab643e13bcd70eeb258d479076

SOBONKR12AS8ATATEO

You're The One

Figure 4-5. Binarizing song counts

You can clearly see from Figure 4-5 that both the methods have produced the same results depicted in
features watched and pd_watched. Thus, we have the song listen counts as a binarized feature indicating if
the song was listened to or not by each user.

Rounding

Often when dealing with numeric attributes like proportions or percentages, we may not need values with a
high amount of precision. Hence it makes sense to round off these high precision percentages into numeric
integers. These integers can then be directly used as raw numeric values or even as categorical (discrete-
class based) features. Let’s try applying this concept in a dummy dataset depicting store items and their
popularity percentages.

In [8]:

.1 items_popularity['popularity scale 100']

items popularity = pd.read csv('datasets/item popularity.csv', encoding='utf-8")

.: # rounding off percentages
: items_popularity['popularity scale 10']

np.array(np.round((items_popularity['pop percent'] * 10)), dtype="int")

np.array(np.round((items_popularity['pop percent'] * 100)), dtype='int")

: items_popularity

Out[8]:

item_id pop_percent
0 it 01345 0.98324
1 it 03431 0.56123
2 it_04572 0.12098
3 it 98021 0.35476

188

10

B R o

popularity scale 10 popularity scale 100

98
56
12
35

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

4 it 01298 0.92101 9 92
5 it 90120 0.81212 8 81
6 it 10123 0.56502 6 57

Thus after our rounding operations, you can see the new features in the data depicted in the previous
dataframe. Basically we tried two forms of rounding. The features depict the item popularities now both on
a scale of 1-10 and on a scale of 1-100. You can use these values both as numerical or categorical features
based on the scenario and problem.

Interactions

A model is usually built in such a way that we try to model the output responses (discrete classes or
continuous values) as a function of the input feature variables. For example, a simple linear regression
equation can be depicted as y = c,x, + ¢,x, + ... + ¢, x, where the input features are depicted by variables {x,, x,,
... x } having weights or coefficients of {c,, c,, ... ¢} respectively and the goal is the predict response y. In this
case, this simple linear model depicts the relationship between the output and inputs, purely based on the
individual, separate input features.

However, often in several real-world datasets and scenarios, it makes sense to also try to capture the
interactions between these feature variables as a part of the input feature set. A simple depiction of the
extension of the above linear regression formulation with interaction features would be y = ¢ x, + ¢, x, + ... +
c,X +¢, X>+C,x,” + XX, + ... where features like {x,x,, x?, ...} denote the interaction features. Let’s try

11771 22772 12771
engineering some interaction features on our Pokémon dataset now.

In [9]: atk def = poke df[['Attack', 'Defense']]
: atk _def.head()

Out[9]:

Attack Defense
0 49 49
1 62 63
2 82 83
3 100 123
4 52 43

We can see in this output, the two numeric features depicting Pokémon attack and defense. The
following code helps us build interaction features from these two features. We will build features up to the
second degree using the PolynomialFeatures class from scikit-learn's APL

In [10]: from sklearn.preprocessing import PolynomialFeatures

...t pf = PolynomialFeatures(degree=2, interaction only=False, include bias=False)

...t res = pf.fit_transform(atk_def)

A (S

Out[10]:

array([[49., 49., 2401., 2401., 2401.],
[62., 63., 3844., 3906., 3969.],
[82., 83., 6724., 6806., 6889.]

[110., 60., 12100., 6600., 3600.

]
[160., 60., 25600., 9600., 3600.]
[110., 120., 12100., 13200., 14400.]

189

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

We can clearly see from this output that we have a total of five features including the new interaction
features. We can see the degree of each feature in the matrix, using the following snippet.

In [11]: pd.DataFrame(pf.powers_, columns=['Attack degree', 'Defense_degree'])
Out[11]:
Attack_degree Defense degree

0 1 0
1 0 1
2 2 0
3 1 1
4 0 2

Now that we know what each feature actually represented from the degrees depicted, we can assign a
name to each feature as follows to get the updated feature set.

In [12]: intr_features = pd.DataFrame(res,
: columns=['Attack', 'Defense’,

"Attack”2', 'Attack x Defense', 'Defense”2'])

...: intr_features.head(5)

Out[12]:

Attack Defense Attack”2 Attack x Defense Defense”2
0 49.0 49.0 2401.0 2401.0 2401.0
1 62.0 63.0 3844.0 3906.0 3969.0
2 82.0 83.0 6724.0 6806.0 6889.0
3 100.0 123.0 10000.0 12300.0 15129.0
4 52.0 43.0 2704.0 2236.0 1849.0

Thus we can see our original and interaction features in Figure 4-10. The fit_transform(...) API
function from scikit-1learn is useful to build a feature engineering representation object on the training
data, which can be reused on new data during model predictions by calling on the transform(...) function.
Let’s take some sample new observations for Pokémon attack and defense features and try to transform
them using this same mechanism.

In [13]: new df = pd.DataFrame([[95, 75],[121, 120], [77, 60]],
: columns=['Attack', 'Defense'])

«oot new_df
Out[13]:
Attack Defense
0 95 75
1 121 120
2 77 60

We can now use the pf object that we created earlier and transform these input features to give us the
interaction features as follows.

In [14]: new_res = pf.transform(new_df)
...t new_intr features = pd.DataFrame(new_res,
columns=['Attack', 'Defense’,
: 'Attack”2', 'Attack x Defense', 'Defense”2'])
: new_intr features
Out[14]:

190

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

Attack Defense Attack”2 Attack x Defense Defense”2

0 95.0 75.0 9025.0 7125.0 5625.0
1 121.0 120.0 14641.0 14520.0 14400.0
2 77.0 60.0 5929.0 4620.0 3600.0

Thus you can see that we have successfully obtained the necessary interaction features for the new
dataset. Try building interaction features on three or more features now!

Binning

Often when working with numeric data, you might come across features or attributes which depict raw
measures such as values or frequencies. In many cases, often the distributions of these attributes are skewed
in the sense that some sets of values will occur a lot and some will be very rare. Besides that, there is also the
added problem of varying range of these values. Suppose we are talking about song or video view counts.

In some cases, the view counts will be abnormally large and in some cases very small. Directly using these
features in modeling might cause issues. Metrics like similarity measures, cluster distances, regression
coefficients and more might get adversely affected if we use raw numeric features having values which range
across multiple orders of magnitude. There are various ways to engineer features from these raw values so
we can these issues. These methods include transformations, scaling and binning/quantization.

In this section, we will talk about binning which is also known as quantization. The operation of binning
is used for transforming continuous numeric values into discrete ones. These discrete numbers can be
thought of as bins into which the raw values or numbers are binned or grouped into. Each bin represents a
specific degree of intensity and has a specific range of values which must fall into that bin. There are various
ways of binning data which include fixed-width and adaptive binning. Specific techniques can be employed
for each binning process. We will use a dataset extracted from the 2016 FreeCodeCamp Developer/Coder
survey which talks about various attributes pertaining to coders and software developers. You can check it
out yourself at https://github.com/freeCodeCamp/2016-new-coder-survey for more details. Let’s load the
dataset and take a peek at some interesting attributes.

In [15]: fcc survey df = pd.read csv('datasets/fcc 2016 coder survey subset.csv',
encoding="utf-8")
..: fcc_survey df[['ID.x', 'EmploymentField', 'Age', 'Income']].head()

ID.x EmploymentField | Age | Income

0| cef35615d61b20211dc794e12746d114 | office and administrative support 28.0| 32000.0

1| 323e5a113644d18185c743¢c241407754 | food and beverage 22.0|15000.0
2| b20a1027e5cd062e654263764157461d | finance 19.0 (48000.0
3| 04a11e4bcb573a1261eb0d9948d32637 | arts, entertainment, sports, or media | 26.0 | 43000.0
4| 9368291c93d5d515¢8cdb1ab75e18bec | education 20.0| 6000.0

Figure 4-6. Important attributes from the FCC coder survey dataset

The dataframe depicted in Figure 4-6 shows us some interesting attributes of the coder survey dataset,
some of which we will be analyzing in this section. The ID.x variable is basically a unique identifier for each
coder/developer who took the survey and the other fields are pretty self-explanatory.

191

https://github.com/freeCodeCamp/2016-new-coder-survey

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

Fixed-Width Binning

In fixed-width binning, as the name indicates, we have specific fixed widths for each of the bins, which are
usually pre-defined by the user analyzing the data. Each bin has a pre-fixed range of values which should be
assigned to that bin on the basis of some business or custom logic, rules, or necessary transformations.

Binning based on rounding is one of the ways, where you can use the rounding operation that we
discussed earlier to bin raw values. Let’s consider the Age feature from the coder survey dataset. The
following code shows the distribution of developer ages who took the survey.

In [16]: fig, ax = plt.subplots()
...t fcc_survey df['Age'].hist(color="#A9C5D3")
: ax.set_title('Developer Age Histogram', fontsize=12)
: ax.set_xlabel('Age', fontsize=12)
: ax.set_ylabel('Frequency', fontsize=12)

Oout[16]:
5000 | !Develloper Ag:!]e H[st(!ngram . |
4000_...,...% -
>3000 |- |- e e P T S
= H
[:
- H
o 5
22000 |- fd S -
1000k bi S S S S—
0 i |] | _11 . !
10 20 30 40 50 60 70 80 90
Age

Figure 4-7. Histogram depicting developer age distribution

The histogram in Figure 4-7 depicts the distribution of developer ages, which is slightly right skewed as
expected. Let’s try to assign these raw age values into specific bins based on the following logic.

Age Range: Bin

0- 9 0
10 - 19 1
20 - 29 2
30 - 39 3

192

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

40 - 49 : 4

50 - 59 :5

60 - 69 : 6
. and so on

We can easily do this using what we learned in the “Rounding” section earlier where we round off these
raw age values by taking the floor value after dividing it by 10. The following code depicts the same.

In [17]: fcc_survey df['Age bin round'] = np.array(np.floor(np.array(fcc_survey df['Age']) /
10.))
...t fcc_survey df[['ID.x", 'Age', 'Age bin round']].iloc[1071:1076]
Out[17]:
ID.x Age Age bin_round

1071 6a02aa4618c99fdb3e24de522a099431 17.0 1.0
1072 f0e5e47278c5f248fe861c5f7214c07a 38.0 3.0
1073 6e14f6d0o779b7e424fa3fdd9esbd3bf9 21.0 2.0
1074 ¢2654c07dc929cdf3dadadiaec4affbb3 53.0 5.0
1075 07449fc9339b2e57703ec7886232523 35.0 3.0

We take a specific slice of the dataset (rows 1071-1076) to depict users of varying ages. You can see
the corresponding bins for each age have been assigned based on rounding. But what if we need more
flexibility? What if I want to decide and fix the bin widths myself?

Binning based on custom ranges is the answer to the all our questions about fixed-width binning,
some of which I just mentioned. Let’s define some custom age ranges for binning developer ages using the
following scheme.

Age Range : Bin

0 - 15 1
16 - 30 2
31 - 45 3
46 - 60 : 4
61 - 75 :5
75 - 100 6

Based on this custom binning scheme, we will now label the bins for each developer age value with the
help of the following code. We will store both the bin range as well as the corresponding label.

In [18]: bin_ranges = [0, 15, 30, 45, 60, 75, 100]
...t bin_names = [1, 2, 3, 4, 5, 6]
: fcc_survey df['Age bin custom range'] = pd.cut(np.array(fcc_survey df['Age']),
bins=bin_ranges)
pd.cut(np.array(fcc_survey df['Age']),
bins=bin_ranges, labels=bin_names)

..: fcc_survey df['Age bin_custom label']

..t fcc_survey df[['ID.x", 'Age', 'Age_bin_round',
'Age _bin_custom range', 'Age bin custom label']].iloc[1071:1076]

193

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

ut[18]:

ID.x| Age | Age_bin_round | Age_bin_custom_range | Age_bin_custom_label
1071 | 6a02aad618c991db3e24de5222009431 | 17.0(1.0 (15, 30] 2
1072 | 10ebed7278c512481e861¢517214c07a | 38.0(3.0 (30, 45] 3
1073 | 6e1416d0779b7ed4241a3fdd9e4bd3bfo | 21.0|2.0 (15, 30] 2
1074 | c2654c07dc929cdt3dadddiaecaffbb3 | 53.0|5.0 (45, 60] 4
1075 | 1074491c9339b2e57703ec7886232523 | 35.0(3.0 (30, 45] 3

Figure 4-8. Custom age binning for developer ages

We can see from the dataframe output in Figure 4-8 that the custom bins based on our scheme have
been assigned for each developer’s age. Try out some of your own binning schemes!

Adaptive Binning

So far, we have decided the bin width and ranges in fixed-width binning. However, this technique can lead to
irregular bins that are not uniform based on the number of data points or values which fall in each bin. Some
of the bins might be densely populated and some of them might be sparsely populated or even be empty!
Adaptive binning is a safer and better approach where we use the data distribution itself to decide what
should be the appropriate bins.

Quantile based binning is a good strategy to use for adaptive binning. Quantiles are specific values or
cut-points which help in partitioning the continuous valued distribution of a specific numeric field into
discrete contiguous bins or intervals. Thus, g-Quantiles help in partitioning a numeric attribute into g equal
partitions. Popular examples of quantiles include the 2-Quantile known as the median which divides the
data distribution into two equal bins, 4-Quantiles known as the quartiles, which divide the data into four
equal bins and 10-Quantiles also known as the deciles which create 10 equal width bins. Let’s now look at a
slice of data pertaining to developer income values in our coder survey dataset.

In [19]: fcc_survey df[['ID.x", 'Age', 'Income']].iloc[4:9]

Out[19]:

ID.x Age Income
4 9368291c93d5d5f5c8cdb1a575e18bec 20.0 6000.0
5 ddoe77eab9270e4b67c19b0d6bbf621b 34.0 40000.0
6 7599c0aa0419b59fd11ffede98a3665d 23.0 32000.0
7 6dff182db452487f07a47596f314bddc 35.0 40000.0
8 9dc233f8ed1cbeb2432672ab4bb39249 33.0 80000.0

The slice of data depicted by the dataframe shows us the income values for each developer in our
dataset. Let’s look at the whole data distribution for this Income variable now using the following code.

In [20]: fig, ax = plt.subplots()
...t fcc_survey df['Income'].hist(bins=30, color="#A9C5D3")
: ax.set_title('Developer Income Histogram', fontsize=12)
: ax.set xlabel('Developer Income', fontsize=12)
.t ax.set_ylabel('Frequency', fontsize=12)

194

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

out[20]:
1200 l?eveloper lncc!nme Histograrrj
TOOD LB st oo o e D ey]
800 -t - “._.é_....“. T T TR __é......__.. ==
= _ . :
e . ;
c = | :
g 600+ At G S
o i
L = :
o s |
0 i i 1 _|_
0 50000 100000 150000 200000

Developer Income
Figure 4-9. Histogram depicting developer income distribution
We can see from the distribution depicted in Figure 4-9 that as expected there is a right skew with lesser

developers earning more money and vice versa. Let’s take a 4-Quantile or a quartile based adaptive binning
scheme. The following snippet helps us obtain the income values that fall on the four quartiles in the distribution.

In [21]: quantile list = [0, .25, .5, .75, 1.]
...t quantiles = fcc_survey df['Income'].quantile(quantile list)

...t quantiles
Out[21]:
0.00 6000.0
0.25 20000.0

0.50 37000.0
0.75 60000.0
1.00 200000.0

To visualize the quartiles obtained in this output better, we can plot them in our data distribution using
the following code snippet.

In [22]: fig, ax = plt.subplots()
...t fcc_survey df['Income'].hist(bins=30, color="#A9C5D3")

...: for quantile in quantiles:
qvl = plt.axvline(quantile, color="r")
...t ax.legend([qvl], ['Quantiles'], fontsize=10)

: ax.set_title('Developer Income Histogram with Quantiles', fontsize=12)
: ax.set xlabel('Developer Income', fontsize=12)

..t ax.set_ylabel('Frequency', fontsize=12)

195

CHAPTER 4

FEATURE ENGINEERING AND SELECTION

out[22]:
1200 Develop!er Income Hnszzogram with Quantiles
|
1000 - B8 -4 - “””““‘f”“'”“‘“”“f“””“““'“”“
sool . @ .| .. DN PRSI SESURRMER
o é 2
S : :
o : :
- : :
= 400 |- EEIER T T
200 | FEIEEEEIN . . _____________________
0 _143L1"r1-r1—L4%pq I_
0 50000 100000 150000

Developer Income

Figure 4-10. Histogram depicting developer income distribution with quartile values

200000

The 4-Quantile values for the income attribute are depicted by red vertical lines in Figure 4-10.
Let’s now use quantile binning to bin each of the developer income values into specific bins using the
following code.

In [23]:

quantile labels =

..t fcc_survey df[['ID.x", 'Age', 'Income',
'Income_quantile range', 'Income quantile label']].iloc[4:9]

[IO'ZSQ') |25_50Q|’ |50'75Q') |75_100Q|]
: fcc_survey df['Income quantile range'] = pd.qcut(fcc_survey df['Income'],

g=quantile list)
: fcc_survey df['Income quantile label'] = pd.qcut(fcc_survey df['Income'],
g=quantile list,
labels=quantile labels)

ID.x| Age | Income | Income_quantile_range | Income_quantile_label
4 | 9368291c93d5d515c8cdbla575e18bec | 20.0 | 6000.0 | (5999.999, 20000.0] 0-25Q
5 | dd0e77eab0270e4b67¢19b0d6bDI621D | 34.0 | 40000.0 | (37000.0, 60000.0] 50-75Q
6 | 7509¢0aa0419b591d11fede98a3665d | 23.0 | 32000.0 | (20000.0, 37000.0] 25-50Q
7 | 6d1f182db452487107a475961314bddc | 35.0 | 40000.0 | (37000.0, 60000.0] 50-75Q
8| 9dc23318ed1c6eb2432672ab4bb39249 | 33.0 | 80000.0 | (60000.0, 200000.0] 75-100Q

Figure 4-11. Quantile based bin ranges and labels for developer incomes

196

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

The result dataframe depicted in Figure 4-11 clearly shows the quantile based bin range and
corresponding label assigned for each developer income value in the Income_quantile_range and
Income_quantile labels features, respectively.

Statistical Transformations

Let’s look at a different strategy of feature engineering on numerical data by using statistical or mathematical
transformations. In this section, we will look at the Log transform as well as the Box-Cox transform. Both of
these transform functions belong to the Power Transform family of functions. These functions are typically
used to create monotonic data transformations, but their main significance is that they help in stabilizing
variance, adhering closely to the normal distribution and making the data independent of the mean based
on its distribution. Several transformations are also used as a part of feature scaling, which we cover in a
future section.

Log Transform

The log transform belongs to the power transform family of functions. This function can be defined as

y =log,(x) which reads as log of x to the base b is equal to y. This translates to b* = x, which indicates as
to what power must the base b be raised to in order to get x. The natural logarithm uses the base b=e
where e = 2.71828 popularly known as Euler’s number. You can also use base b = 10 used popularly in the
decimal system. Log transforms are useful when applied to skewed distributions as they tend to expand
the values which fall in the range of lower magnitudes and tend to compress or reduce the values which
fall in the range of higher magnitudes. This tends to make the skewed distribution as normal-like as
possible. Let’s use log transform on our developer income feature from our coder survey dataset.

In [24]: fcc_survey df['Income log'] = np.log((1+ fcc_survey df['Income']))
...t fcc_survey df[['ID.x", 'Age', 'Income', 'Income log']].iloc[4:9]
Out[24]:

ID.x Age Income Income_log
9368291c93d5d5f5c8cdbias75e18bec 20.0 6000.0 8.699681
ddoe77eab9270e4b67c19b0d6bbf621b 34.0 40000.0 10.596660
7599c0aa0419b59fd11ffede98a3665d 23.0 32000.0 10.373522
6dff182db452487107a47596f314bddc 35.0 40000.0 10.596660
9dc233f8ed1c6eb2432672ab4bb39249 33.0 80000.0 11.289794

o0 ~N OV B

The dataframe obtained in this output depicts the log transformed income feature in the Income_log
field. Let’s now plot the data distribution of this transformed feature using the following code.

In [25]: income_log mean = np.round(np.mean(fcc_survey df['Income log']), 2)

.1 fig, ax = plt.subplots()
: fcc_survey df['Income log'].hist(bins=30, color="#A9C5D3")
...t plt.axvline(income log mean, color='r")
...t ax.set_title('Developer Income Histogram after Log Transform', fontsize=12)
: ax.set xlabel('Developer Income (log scale)', fontsize=12)
.1 ax.set_ylabel('Frequency', fontsize=12)
: ax.text(11.5, 450, r'μ="+str(income log mean), fontsize=10)

197

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

Out[25]: .
600 Developer Income Histogram after Log Transform
500} - S— SN N E— A S— |
: : : HH L ¥4
A00 |- v {‘ 1
N H . — v . .
v | .
= g l
@ 300 |- sanienaa S S .. BB B RSO _
o = - :
L L B
“ 200} -
100 : ‘

0 ; ; ;
85 9.0 95 100 105 11.0 115 12.0 125
Developer Income (log scale)

Figure 4-12. Histogram depicting developer income distribution after log transform

Thus we can clearly see that the original developer income distribution that was right skewed in
Figure 4-10 is more Gaussian or normal-like in Figure 4-12 after applying the log transform.

Box-Cox Transform

Let’s now look at the Box-Cox transform, another popular function belonging to the power transform family
of functions. This function has a prerequisite that the numeric values to be transformed must be positive
(similar to what log transform expects). In case they are negative, shifting using a constant value helps.
Mathematically, the Box-Cox transform function can be defined as,

E fori>0
y=f(x2)=x"={ 1

log, (x)forA=0

Such that the resulted transformed output y is a function of input x and transformation parameter A
such that when A = 0, the resultant transform is the natural log transform, which we discussed earlier. The
optimal value of A is usually determined using a maximum likelihood or log-likelihood estimation. Let’s
apply the Box-Cox transform on our developer income feature. To do this, first we get the optimal lambda
value from the data distribution by removing the non-null values using the following code.

198

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

In [26]: # get optimal lambda value from non null income values
: income = np.array(fcc_survey df['Income'])
: income_clean = income[~np.isnan(income)]
...t 1, opt lambda = spstats. boxcox(income_clean)
: print('Optimal lambda value:', opt_lambda)
Optlmal lambda value: 0.117991239456

Now that we have obtained the optimal A value, let’s use the Box-Cox transform for two values of A such
that \=0 &A= N ptimal and transform the raw numeric values pertaining to developer incomes.
In [27]: fcc_survey df['Income boxcox lambda 0'] = spstats.boxcox((1+fcc_survey df['Income']),
. 1mbda=0)

: fcc_survey df['Income boxcox lambda opt'] = spstats.boxcox(fcc_survey df['Income'],

.t 1mbda=opt_lambda)
: fcc_survey df[['ID.x", 'Age', 'Income’, 'Income_log',
"Income_boxcox_lambda 0', 'Income boxcox lambda opt']].iloc[4:9]

1D.x| Age | Income | Income _log | Income_boxcox_lambda_0| Income _boxcox_lambda_opt
4| 9368201c93d5d515c8cdbla575e18bec | 20.0|6000.0 |8.699681 8.690681 15.180668
5| dd0e77eab9270e4b67¢19b0d6bbIE21D | 34.0 | 40000.0 | 10.596660 | 10.596660 21.115342
6| 7599c0aa0419b591d11Mfede98a3665d | 23.0 | 32000.0 | 10373522 | 10.373522 20.346420
7 | 6dt182db452487107a475961314bddc | 35.0 | 40000.0 | 10.506660 | 10.596660 21.115342
8| 9dc23318ed1c6eb2432672ab4bb30240 | 33.0 | 80000.0 | 11.289794 | 11.289794 23.637131

Figure 4-13. Dataframe depicting developer income distribution after box-cox transform

The dataframe obtained in the output shown in Figure 4-13 depicts the income feature after applying
the Box-Cox transform forA=0and A =% . in the Income_boxcox_lambda_0 and Income_boxcox_lambda_
opt fields respectively. Also as expected, the Income_log field has the same values as the Box-Cox transform
with A = 0. Let’s now plot the data distribution for the Box-Cox transformed developer values with optimal

lambda. See Figure 4-14.
In [30]: income boxcox mean = np.round(np.mean(fcc_survey df['Income boxcox lambda opt']), 2)

...t fig, ax = plt.subplots()

...t fcc_survey df['Income boxcox lambda opt'].hist(bins=30, color="#A9C5D3")
: plt.axvline(income_boxcox mean, color='r")
: ax.set_title('Developer Income Histogram after Box-Cox Transform', fontsize=12)
: ax.set xlabel('Developer Income (Box-Cox transform)', fontsize=12)

...t ax.set_ylabel('Frequency', fontsize=12)

..t ax.text(24, 450, r'μ="+str(income boxcox_mean), fontsize=10)

199

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

Out[28]:

600

Developer Income Histogram after Box-Cox Transform

-—

500 | bt e P

400k ... — A EN 1 - s—.

Frequency
w
o
o
1
]

=

o

o
T

0 ;
14 16 18 20 22 24 26 28
Developer Income (Box-Cox transform)

Figure 4-14. Histogram depicting developer income distribution after box-cox transform (A = Aaptimal)

The distribution of the transformed numeric values for developer income after the Box-Cox distribution
also look similar to the one we had obtained after the Log transform such that it is more normal-like and the
extreme right skew that was present in the raw data has been minimized here.

Feature Engineering on Categorical Data

So far, we have been working on continuous numeric data and you have also seen various techniques for
engineering features from the same. We will now look at another structured data type, which is categorical
data. Any attribute or feature that is categorical in nature represents discrete values that belong to a specific
finite set of categories or classes. Category or class labels can be text or numeric in nature. Usually there are
two types of categorical variables—nominal and ordinal.

Nominal categorical features are such that there is no concept of ordering among the values, i.e., it does
not make sense to sort or order them. Movie or video game genres, weather seasons, and country names are
some examples of nominal attributes. Ordinal categorical variables can be ordered and sorted on the basis of
their values and hence these values have specific significance such that their order makes sense. Examples
of ordinal attributes include clothing size, education level, and so on.

In this section, we look at various strategies and techniques for transforming and encoding categorical
features and attributes. The code used for this section is available in the code files for this chapter. You can
load feature_engineering categorical.py directly and start running the examples or use the jupyter
notebook, Feature Engineering on Categorical Data.ipynb, for a more interactive experience. Before
we begin, let’s load the following dependencies.

In [1]: import pandas as pd
: import numpy as np

200

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

Once you have these dependencies loaded, let’s get started and engineer some features from
categorical data.

Transforming Nominal Features

Nominal features or attributes are categorical variables that usually have a finite set of distinct discrete
values. Often these values are in string or text format and Machine Learning algorithms cannot understand
them directly. Hence usually you might need to transform these features into a more representative numeric
format. Let’s look at a new dataset pertaining to video game sales. This dataset is also available on Kaggle
(https://www.kaggle.com/gregorut/videogamesales). We have downloaded a copy of this for your
convenience. The following code helps us load this dataset and view some of the attributes of our interest.

In [2]: vg_df = pd.read csv('datasets/vgsales.csv', encoding="utf-8")
..t vg df[['Name', 'Platform', 'Year', 'Genre', 'Publisher']].iloc[1:7]
Out[2]:

Name Platform Year Genre Publisher
1 Super Mario Bros. NES 1985.0 Platform Nintendo
2 Mario Kart Wii Wii 2008.0 Racing Nintendo
3 Wii Sports Resort Wii 2009.0 Sports Nintendo
4 Pokemon Red/Pokemon Blue GB 1996.0 Role-Playing Nintendo
5 Tetris GB 1989.0 Puzzle Nintendo
6 New Super Mario Bros. DS 2006.0 Platform Nintendo

The dataset depicted in this dataframe shows us various attributes pertaining to video games. Features
like P1atform, Genre, and Publisher are nominal categorical variables. Let’s now try to transform the video
game Genre feature into a numeric representation. Do note here that this doesn’t indicate that the transformed
feature will be a numeric feature. It will still be a discrete valued categorical feature with numbers instead of
text for each genre. The following code depicts the total distinct genre labels for video games.

In [3]: genres = np.unique(vg_df['Genre'])
... genres
Out[3]:
array(['Action', 'Adventure', 'Fighting', 'Misc', 'Platform', 'Puzzle',
'Racing', 'Role-Playing', 'Shooter', 'Simulation', 'Sports’,
'Strategy'], dtype=object)

This output tells us we have 12 distinct video game genres in our dataset. Let’s transform this feature
now using a mapping scheme in the following code.

In [4]: from sklearn.preprocessing import LabelEncoder

...t gle = LabelEncoder()

..: genre labels = gle.fit transform(vg df['Cenre'])

: genre_mappings = {index: label for index, label in enumerate(gle.classes)}

...t genre_mappings
Out[4]:
{0: 'Action’, 1: 'Adventure', 2: 'Fighting', 3: 'Misc’,

4: 'Platform', 5: 'Puzzle', 6: 'Racing', 7: 'Role-Playing',
8: 'Shooter', 9: 'Simulation', 10: 'Sports', 11: 'Strategy'}

201

https://www.kaggle.com/gregorut/videogamesales

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

From the output, we can see that a mapping scheme has been generated where each genre value is
mapped to a number with the help of the LabelEncoder object gle. The transformed labels are stored in the
genre_labels value. Let’s write it back to the original dataframe and view the results.

In [5]: vg df['GenrelLabel'] = genre labels
..: vg df[['Name', 'Platform', 'Year', 'Genre', 'GenrelLabel']].iloc[1:7]

Out[5]:

Name Platform Year Genre Genrelabel
1 Super Mario Bros. NES 1985.0 Platform 4
2 Mario Kart Wii Wii 2008.0 Racing 6
3 Wii Sports Resort Wii 2009.0 Sports 10
4 Pokemon Red/Pokemon Blue GB 1996.0 Role-Playing 7
5 Tetris GB 1989.0 Puzzle 5
6 New Super Mario Bros. DS 2006.0 Platform 4

The Genrelabel field depicts the mapped numeric labels for each of the Genre labels and we can clearly
see that this adheres to the mappings that we generated earlier.

Transforming Ordinal Features

Ordinal features are similar to nominal features except that order matters and is an inherent property with
which we can interpret the values of these features. Like nominal features, even ordinal features might be
present in text form and you need to map and transform them into their numeric representation. Let’s now
load our Pokémon dataset that we used earlier and look at the various values of the Generation attribute for
each Pokémon.

In [6]: poke df = pd.read csv('datasets/Pokemon.csv', encoding="utf-8")
...: poke df = poke df.sample(random state=1, frac=1).reset index(drop=True)

...t np.unique(poke_df['Generation'])
Out[6]: array(['Gen 1', 'Gen 2', 'Gen 3', 'Gen 4', 'Gen 5', 'Gen 6'], dtype=object)

We resample the dataset in this code just so we can get a good slice of data later on that represents
all the distinct values which we are looking for. From this output we can see that there are a total of six
generations of Pokémon. This attribute is definitely ordinal because Pokémon belonging to Generation 1
were introduced earlier in the video games and the television shows than Generation 2 and so on. Hence
they have a sense of order among them. Unfortunately, since there is a specific logic or set of rules involved
in case of each ordinal variable, there is no generic module or function to map and transform these features
into numeric representations. Hence we need to hand-craft this using our own logic, which is depicted in the
following code snippet.

In [7]: gen_ord map = {'Gen 1': 1, 'Gen 2': 2, 'Gen 3': 3,
'Gen 4': 4, 'Gen 5': 5, 'Gen 6': 6}

...t poke df['GenerationLabel'] = poke df['Generation'].map(gen_ord map)
...: poke df[['Name', 'Generation', 'GenerationLabel']].iloc[4:10]

Out[7]:

Name Generation GenerationlLabel
4 Octillery Gen 2 2
5 Helioptile Gen 6 6
6 Dialga Gen 4 4

202

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

7 DeoxysDefense Forme Gen 3 3
8 Rapidash Gen 1
9 Swanna Gen 5 5

Thus, you can see that it is really easy to build your own transformation mapping scheme with the help
of Python dictionaries and use the map(. . .) function from pandas to transform the ordinal feature.

Encoding Categorical Features

We have mentioned several times in the past that Machine Learning algorithms usually work well with
numerical values. You might now be wondering we already transformed and mapped the categorical
variables into numeric representations in the previous sections so why would we need more levels

of encoding again? The answer to this is pretty simple. If we directly fed these transformed numeric
representations of categorical features into any algorithm, the model will essentially try to interpret these as
raw numeric features and hence the notion of magnitude will be wrongly introduced in the system.

A simple example would be from our previous output dataframe, a model fit on GenerationLabel
would think that value 6 > 5 > 4 and so on. While order is important in the case of Pokémon generations
(ordinal variable), there is no notion of magnitude here. Generation 6 is notlarger than Generation 5and
Generation 1 is notsmaller than Generation 6. Hence models built using these features directly would
be sub-optimal and incorrect models. There are several schemes and strategies where dummy features are
created for each unique value or label out of all the distinct categories in any feature. In the subsequent
sections, we will discuss some of these schemes including one hot encoding, dummy coding, effect coding,
and feature hashing schemes.

One Hot Encoding Scheme

Considering we have numeric representation of any categorical feature with m labels, the one hot encoding
scheme, encodes or transforms the feature into m binary features, which can only contain a value of 1 or

0. Each observation in the categorical feature is thus converted into a vector of size m with only one of the
values as 1 (indicating it as active). Let’s take our Pokémon dataset and perform some one hot encoding
transformations on some of its categorical features.

In [8]: poke df[['Name', 'Generation', 'Legendary']].iloc[4:10]

Out[8]:

Name Generation Legendary
4 Octillery Gen 2 False
5 Helioptile Gen 6 False
6 Dialga Gen 4 True
7 DeoxysDefense Forme Gen 3 True
8 Rapidash Gen 1 False
9 Swanna Gen 5 False

Considering the dataframe depicted in the output, we have two categorical features, Generation and
Legendary, depicting the Pokémon generations and their legendary status. First, we need to transform these
text labels into numeric representations. The following code helps us achieve this.

In [9]: from sklearn.preprocessing import OneHotEncoder, LabelEncoder

: # transform and map pokemon generations
...t gen_le = LabelEncoder()

203

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

...t gen_labels = gen le.fit transform(poke df['Generation'])
..: poke df['Gen Label'] = gen labels

..t # transform and map pokemon legendary status

..: leg le = LabelEncoder()

..: leg labels = leg le.fit transform(poke df['Legendary'])
: poke df['Lgnd Label'] = leg labels

.: poke_df sub = poke df[['Name', 'Generation', 'Gen_Label', 'Legendary', 'Lgnd Label']]
: poke_df sub.iloc[4:10]

Out[9]:

Name Generation Gen_Label Legendary Lgnd Label
4 Octillery Gen 2 1 False 0
5 Helioptile Gen 6 5 False 0
6 Dialga Gen 4 3 True 1
7 DeoxysDefense Forme Gen 3 2 True 1
8 Rapidash Gen 1 0 False 0
9 Swanna Gen 5 4 False 0

The features Gen_Label and Lgnd_Label now depict the numeric representations of our categorical
features. Let’s now apply the one hot encoding scheme on these features using the following code.

In [10]: # encode generation labels using one-hot encoding scheme
..t gen_ohe = OneHotEncoder()
: gen_feature arr = gen ohe.fit transform(poke df[['Gen_Label']]).toarray()
: gen feature labels = list(gen le.classes)
...t gen features = pd.DataFrame(gen feature arr, columns=gen feature labels)

: # encode legendary status labels using one-hot encoding scheme

.: leg ohe = OneHotEncoder()

.: leg feature arr = leg ohe.fit transform(poke df[['Lgnd Label']]).toarray()

.: leg feature labels = ['Legendary '+str(cls label) for cls label in leg le.classes_]
...: leg features = pd.DataFrame(leg feature arr, columns=leg feature labels)

Now, you should remember that you can always encode both the features together using the fit
transform(...) function by passing it a two-dimensional array of the two features. But we are depicting this
encoding for each feature separately, to make things easier to understand. Besides this, we can also create
separate dataframes and label them accordingly. Let’s now concatenate these feature frames and see the
final result.

In [11]: poke df ohe = pd.concat([poke df sub, gen features, leg features], axis=1)
: columns = sum([['Name', 'Generation', 'Gen_Label'],gen feature labels,
['Legendary', 'Lgnd Label'],leg feature labels], [])
...: poke df ohe[columns].iloc[4:10]

204

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

Name | Generatlon | Gen_Label G': Ga: Ga: Ge: Ge: Ga: Legendary | Lgnd_Label | Leg y_False | Leg y_True
4| Octillery Gen 2 1 00 |10 (00 |00 (00 |00 |Faise 0 1.0 0.0
5| Helloptile Gen 6 5 0.0 (00 |00 (00 |00 |1.0 |False] 1.0 0.0
6| Dialga Gen 4 3 00 (00 (00 (10 (00 |00 |Tue 1 0.0 1.0
d y=0oh Gen 3 2 00 (00 [1.0 |00 |00 |00 |True 1 0.0 1.0
Forme
8| Rapidash Gen 1 0 1.0 (00 |00 |00 |00 |00 |False] 1.0 0.0
9| Swanna Gen 5 4 00 |00 (00 |00 |10 |00 |False 0 1.0 0.0

Figure 4-15. Feature set depicting one hot encoded features for Pokémon generation and legendary status

From the result feature set depicted in Figure 4-15, we can clearly see the new one hot encoded features
for Gen_Label and Lgnd_Label. Each of these one hot encoded features is binary in nature and if they
contain the value 1, it means that feature is active for the corresponding observation. For example, row 6
indicates the Pokémon Dialga is a Gen 4 Pokémon having Gen_Label 3 (mapping starts from 0) and the
corresponding one hot encoded feature Gen 4 has the value 1 and the remaining one hot encoded features
are 0. Similarly, its Legendary status is True, corresponding Lgnd_Label is 1 and the one hot encoded feature
Legendary_Trueis also 1, indicating it is active.

Suppose we used this data in training and building a model but now we have some new Pokémon data
for which we need to engineer the same features before we want to run it by our trained model. We can use
the transform(...) function for our LabelEncoder and OneHotEncoder objects, which we have previously
constructed to engineer the features from the training data. The following code shows us two dummy data
points pertaining to new Pokémon.

In [12]: new_poke df = pd.DataFrame([['PikaZoom', 'Gen 3', True],
: ['CharMyToast', 'Gen 4', False]],
celt columns=['Name', 'Generation', 'Legendary'])
...t new_poke df

Out[12]:

Name Generation Legendary
0 PikaZoom Gen 3 True
1 CharMyToast Gen 4 False

We will follow the same process as before of first converting the text categories into numeric
representations using our previously built LabelEncoder objects, as depicted in the following code.

In [13]: new _gen labels = gen le.transform(new_poke df['Generation'])
: new_poke df['Gen_Label'] = new_gen labels

...: new_leg labels = leg le.transform(new_poke_df['Legendary'])
: new_poke df['Lgnd Label'] = new_leg labels

...: new_poke df[['Name', 'Generation', 'Gen_Label', 'Legendary', 'Lgnd Label']]
Out[13]:
Name Generation Gen_Label Legendary Lgnd_Label
0 PikaZoom Gen 3 2 True 1
1 CharMyToast Gen 4 3 False 0

We can now use our previously built LabelEncoder objects and perform one hot encoding on these new
data observations using the following code. See Figure 4-16.

205

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

In [14]: new_gen feature arr = gen ohe.transform(new poke df[['Gen Label']]).toarray()
.1 new_gen features = pd.DataFrame(new_gen feature arr, columns=gen feature labels)

...t new_leg feature arr = leg ohe.transform(new poke df[['Lgnd Label']]).toarray()
...t new_leg features = pd.DataFrame(new leg feature arr, columns=leg feature labels)

: new_poke ohe = pd.concat([new_poke df, new gen features, new leg features], axis=1)
: columns = sum([['Name', 'Generation', 'Gen Label'], gen feature labels,
['Legendary', 'Lgnd Label'], leg feature labels], [])
...t new_poke ohe[columns]

Name | Generation | Gen_Label Q| den Gug Qen| iQen| [Amn

Legendary | Lgnd_Label | Legendary False | Legendary True

o

PikaZoom Gen 3 2 00 |00 |10 |00 |00 |00 |Tue 1 0.0 1.0

-

CharMyToast | Gen 4 3 0.0 0.0 |00 10 0.0 0.0 False (4] 1.0 0.0

Figure 4-16. Feature set depicting one hot encoded features for new pokemon data points

Thus, you can see how we used the fit_transform(...) functions to engineer features on our
dataset and then we were able to use the encoder objects to engineer features on new data using the
transform(...) function based on the data what it observed previously, specifically the distinct categories
and their corresponding labels and one hot encodings. You should always follow this workflow in the future
for any type of feature engineering when you deal with training and test datasets when you build models.
Pandas also provides a wonderful function called to_dummies(...), which helps us easily perform one hot
encoding. The following code depicts how to achieve this.

In [15]: gen onehot features = pd.get dummies(poke df['Generation'])
...t pd.concat([poke df[['Name', 'Generation']], gen onehot features], axis=1).
iloc[4:10]

Out[15]:

Name Generation Gen 1 Gen 2 Gen 3 Cen 4 Gen 5 Gen 6
4 Octillery Gen 2 0 1 0 0 0 0
5 Helioptile Gen 6 0 0 0 0 0 1
6 Dialga Gen 4 0 0 0 1 0 0
7 DeoxysDefense Forme Gen 3 0 0 1 0 0 0
8 Rapidash Gen 1 1 0 0 0 0 0
9 Swanna Gen 5 0 0 0 0 1 0

The output depicts the one hot encoding scheme for Pokémon generation values similar to what we
depicted in our previous analyses.

Dummy Coding Scheme

The dummy coding scheme is similar to the one hot encoding scheme, except in the case of dummy coding
scheme, when applied on a categorical feature with m distinct labels, we get m-1 binary features. Thus each
value of the categorical variable gets converted into a vector of size m-1. The extra feature is completely
disregarded and thus if the category values range from {0, 1, ..., m-1} the Oth or the m-1th feature is usually
represented by a vector of all zeros (0).

206

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

The following code depicts the dummy coding scheme on Pokémon Generation by dropping the first
level binary encoded feature (Gen 1).

In [16]: gen dummy features = pd.get dummies(poke df['Generation'], drop first=True)
...t pd.concat([poke df[['Name', 'Generation']], gen dummy features], axis=1).iloc[4:10]

Out[16]:

Name Generation Gen 2 Gen 3 Gen 4 Gen 5 Gen 6
4 Octillery Gen 2 1 0 0 0 0
5 Helioptile Gen 6 0 0 0 0 1
6 Dialga Gen 4 0 0 1 0 0
7 DeoxysDefense Forme Gen 3 0 1 0 0 0
8 Rapidash Gen 1 0 0 0 0 0
9 Swanna Gen 5 0 0 0 1 0

If you want, you can also choose to drop the last level binary encoded feature (Gen 6) by using the
following code.

In [17]: gen_onehot features = pd.get dummies(poke df['Generation'])
...t gen dummy features = gen onehot features.iloc[:,:-1]
...t pd.concat([poke df[['Name', 'Generation']], gen dummy features], axis=1).iloc[4:10]

Out[17]:

Name Generation Gen 1 Gen 2 Gen 3 Gen 4 Gen 5
4 Octillery Gen 2 0 1 0 0 0
5 Helioptile Gen 6 0 0 0 0 0
6 Dialga Gen 4 0 0 0 1 0
7 DeoxysDefense Forme Gen 3 0 0 1 0 0
8 Rapidash Gen 1 1 0 0 0 0
9 Swanna Gen 5 0 0 0 0 1

Thus from these outputs you can see that based on the encoded level binary feature which we drop, that
particular categorical value is represented by a vector/encoded features, which all represent 0. For example
in the previous result feature set, Pokémon Heloptile belongs to Gen 6 and is represented by all Os in the
encoded dummy features.

Effect Coding Scheme

The effect coding scheme is very similar to the dummy coding scheme in most aspects. However, the
encoded features or feature vector, for the category values that represent all 0s in the dummy coding scheme,
isreplaced by -1s in the effect coding scheme. The following code depicts the effect coding scheme on the
Pokémon Generation feature.

In [18]: gen_onehot features = pd.get dummies(poke df['Generation'])
...: gen_effect features = gen onehot features.iloc[:,:-1]
...t gen effect features.loc[np.all(gen effect features == 0, axis=1)] = -1.
...: pd.concat([poke df[['Name', 'Generation']], gen effect features], axis=1).iloc[4:10]
Out[18]:
Name Generation Gen 1 Gen 2 Gen 3 Gen 4 Gen 5

4 Octillery Gen 2 0.0 1.0 0.0 0.0 0.0
5 Helioptile Gen6 -1.0 -1.0 -1.0 -1.0 -1.0
6 Dialga Gen 4 0.0 0.0 0.0 1.0 0.0

207

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

7 DeoxysDefense Forme Gen 3 0.0 0.0 1.0 0.0 0.0
8 Rapidash Gen 1 1.0 0.0 0.0 0.0 0.0
9 Swanna Gen 5 0.0 0.0 0.0 0.0 1.0

We can clearly see from the output feature set that all 0s have been replaced by -1 in case of values
which were previously all 0 in the dummy coding scheme.

Bin-Counting Scheme

The encoding schemes discovered so far work quite well on categorical data in general, but they start
causing problems when the number of distinct categories in any feature becomes very large. Essential for
any categorical feature of m distinct labels, you get m separate features. This can easily increase the size of
the feature set causing problems like storage issues, model training problems with regard to time, space
and memory. Besides this, we also have to deal with what is popularly known as the curse of dimensionality
where basically with an enormous number of features and not enough representative samples, model
performance starts getting affected. Hence we need to look toward other categorical data feature
engineering schemes for features having a large number of possible categories (like IP addresses).

The bin-counting scheme is useful for dealing with categorical variables with many categories. In
this scheme, instead of using the actual label values for encoding, we use probability based statistical
information about the value and the actual target or response value which we aim to predict in our modeling
efforts. A simple example would be based on past historical data for IP addresses and the ones which were
used in DDOS attacks; we can build probability values for a DDOS attack being caused by any of the IP
addresses. Using this information, we can encode an input feature which depicts that if the same IP address
comes in the future, what is the probability value of a DDOS attack being caused. This scheme needs
historical data as a pre-requisite and is an elaborate one. Depicting this with a complete example is out of
scope of this chapter but there are several resources online that you can refer to.

Feature Hashing Scheme

The feature hashing scheme is another useful feature engineering scheme for dealing with large scale
categorical features. In this scheme, a hash function is typically used with the number of encoded features
pre-set (as a vector of pre-defined length) such that the hashed values of the features are used as indices in
this pre-defined vector and values are updated accordingly. Since a hash function maps a large number of
values into a small finite set of values, multiple different values might create the same hash which is termed
as collisions. Typically, a signed hash function is used so that the sign of the value obtained from the hash is
used as the sign of the value which is stored in the final feature vector at the appropriate index. This should
ensure lesser collisions and lesser accumulation of error due to collisions.

Hashing schemes work on strings, numbers and other structures like vectors. You can think of hashed
outputs as a finite set of /2 bins such that when hash function is applied on the same values, they get assigned
to the same bin out of the % bins based on the hash value. We can assign the value of i, which becomes the
final size of the encoded feature vector for each categorical feature we encode using the feature hashing
scheme. Thus even if we have over 1000 distinct categories in a feature and we set & = 10, the output feature
set will still have only 10 features as compared to 1000 features if we used a one hot encoding scheme.

Let’s look at the following code snippet, which shows us the number of distinct genres we have in our
video game dataset.

In [19]: unique_genres = np.unique(vg_df[['Genre']])

...t print("Total game genres:", len(unique_genres))
...t print(unique_genres)

208

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

Total game genres: 12
['Action' 'Adventure' 'Fighting' 'Misc' 'Platform' 'Puzzle' 'Racing'
'Role-Playing' 'Shooter' 'Simulation' 'Sports' 'Strategy']

We can clearly see from the output that there are 12 distinct genres and if we used a one hot encoding
scheme on the Genre feature, we would end up having 12 binary features. Instead, we will now use a feature
hashing scheme by leveraging scikit-learn's FeatureHasher class, which uses a signed 32-bit version of
the Murmurhash3 hash function. The following code shows us how to use the feature hashing scheme where
we will pre-set the feature vector size to be 6 (6 features instead of 12).

In [21]: from sklearn.feature extraction import FeatureHasher

.: fh = FeatureHasher(n_features=6, input_type='string"')
: hashed_features = fh.fit transform(vg_df['Genre'])
...: hashed features = hashed features.toarray()
...t pd.concat([vg df[['Name', 'Genre']], pd.DataFrame(hashed features)], axis=1).

iloc[1:7]

Out[21]:

Name Genre 0 1 2 3 4 5
1 Super Mario Bros. Platform 0.0 2.0 2.0 -1.0 1.0 0.0
2 Mario Kart Wii Racing -1.0 0.0 0.0 0.0 0.0 -1.0
3 Wii Sports Resort Sports -2.0 2.0 0.0 -2.0 0.0 0.0
4 Pokemon Red/Pokemon Blue Role-Playing -1.0 1.0 2.0 0.0 1.0 -1.0
5 Tetris Puzzle 0.0 1.0 1.0 -2.0 1.0 -1.0
6 New Super Mario Bros. Platform 0.0 2.0 2.0 -1.0 1.0 0.0

Thus we can clearly see from the result feature set that the Genre categorical feature has been encoded
using the hashing scheme into 6 features instead of 12. We can also see that rows 1 and 6 denote the same
genre of games, Platform which have been rightly encoded into the same feature vector as expected.

Feature Engineering on Text Data

Dealing with structured data attributes like numeric or categorical variables are usually not as challenging
as unstructured attributes like text and images. In case of unstructured data like text documents, the first
challenge is dealing with the unpredictable nature of the syntax, format, and content of the documents,
which make it a challenge to extract useful information for building models. The second challenge is
transforming these textual representations into numeric representations that can be understood by Machine
Learning algorithms. There exist various feature engineering techniques employed by data scientists

daily to extract numeric feature vectors from unstructured text. In this section, we discuss several of these
techniques. Before we get started, you should remember that there are two aspects to execute feature
engineering on text data.

e Pre-processing and normalizing text
e Feature extraction and engineering

Without text pre-processing and normalization, the feature engineering techniques will not work
at their core efficiency hence it is of paramount importance to pre-process textual documents. You can
load feature_engineering text.py directly and start running the examples or use the jupyter notebook,
Feature Engineering on Text Data.ipynb, for a more interactive experience. Let’s load the following
necessary dependencies before we start.

209

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

In [1]: import pandas as pd
: import numpy as np
.t import re
...t import nltk

Let’s now load some sample text documents, do some basic pre-processing, and learn about various
feature engineering strategies to deal with text data. The following code creates our sample text corpus (a
collection of text documents), which we will use in this section.

['The sky is blue and beautiful.',
"Love this blue and beautiful sky!',
'The quick brown fox jumps over the lazy dog.',
'The brown fox is quick and the blue dog is lazy!"',
'The sky is very blue and the sky is very beautiful today',
'The dog is lazy but the brown fox is quick!'

In [2]: corpus

...: labels = ['weather', 'weather', 'animals', 'animals', 'weather', 'animals']
: corpus = np.array(corpus)
: corpus_df = pd.DataFrame({'Document': corpus,
. "Category': labels})

...t corpus_df = corpus_df[['Document', 'Category']]

...: corpus_df

Out[2]:

Document Category
0 The sky is blue and beautiful. weather
1 Love this blue and beautiful sky! weather
2 The quick brown fox jumps over the lazy dog. animals
3 The brown fox is quick and the blue dog is lazy! animals
4 The sky is very blue and the sky is very beaut... weather
5 The dog is lazy but the brown fox is quick! animals

We can see that we have a total of six documents, where three of them are relevant to weather and the
other three talk about animals as depicted by the Category class label.

Text Pre-Processing

Before feature engineering, we need to pre-process, clean, and normalize the text like we mentioned before.
There are multiple pre-processing techniques, some of which are quite elaborate. We will not be going into
alot of details in this section but we will be covering a lot of them in further detail in a future chapter when
we work on text classification and sentiment analysis. Following are some of the popular pre-processing
techniques.

e Text tokenization and lower casing
e Removing special characters

e Contraction expansion

e Removing stopwords

e Correcting spellings

e Stemming

° Lemmatization

210

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

For more details on these topics, you can jump ahead to Chapter 7 of this book or refer to the section
“Text Normalization,” Chapter 3, page 115 of Text Analytics with Python (Apress; Dipanjan Sarkar, 2016).
which covers each of these techniques in detail. We will be normalizing our text here by lowercasing,
removing special characters, tokenizing, and removing stopwords. The following code helps us achieve this.

In [3]: wpt = nltk.WordPunctTokenizer()
..t stop words = nltk.corpus.stopwords.words('english")

...: def normalize document(doc):
: # lower case and remove special characters\whitespaces

doc = re.sub(r'[*a-zA-Z0-9\s]', "', doc, re.I)
doc = doc.lower()
doc = doc.strip()
tokenize document
tokens = wpt.tokenize(doc)
filter stopwords out of document
filtered tokens = [token for token in tokens if token not in stop words]
re-create document from filtered tokens
doc = ' '.join(filtered tokens)
return doc

: normalize corpus = np.vectorize(normalize document)

The np.vectorize(...) function helps us run the same function over all elements of a numpy array
instead of writing a loop. We will now use this function to pre-process our text corpus.

In [4]: norm corpus = normalize corpus(corpus)
: norm_corpus
Out[4]:
array(['sky blue beautiful', 'love blue beautiful sky',
'quick brown fox jumps lazy dog', 'brown fox quick blue dog lazy',
'sky blue sky beautiful today', 'dog lazy brown fox quick'],
dtype="<U32")

You can compare each text document with its original form in our initial dataframe. You will see that
each document is in the lowercase, special symbols have been removed and stopwords (words which carry
little meaning like articles, pronouns, etc.) have been removed. We can now engineer features from this pre-
processed corpus.

Bag of Words Model

This is perhaps one of the simplest yet effective schemes of vectorizing features from unstructured text. The
core principle of this model is to convert text documents into numeric vectors. The dimension or size of each
vector is N where N indicates all possible distinct words across the corpus of documents. Each document
once transformed is a numeric vector of size N where the values or weights in the vector indicate the
frequency of each word in that specific document. The following code helps us vectorize the text corpus into
numeric feature vectors.

In [5]: from sklearn.feature extraction.text import CountVectorizer
: cv = CountVectorizer(min df=0., max_df=1.)

211

http://dx.doi.org/10.1007/978-1-4842-3207-1_7
http://dx.doi.org/10.1007/978-1-4842-3207-1_3

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

¢ cv_matrix = cv.fit transform(norm corpus)

: cv_matrix = cv_matrix.toarray()

... cv_matrix

Out[5]:

array([[1, 1
[1, 1

[0, O,

[0; 1,) 0],

[1, 1, 0, O, > 1],

[0, 0, 1, 1, 1, O, 1, O, 1, O, O]], dtype=int64)

) o])
) O]J
0],

)

>
-

-
-

-
= B O O
-

B, B OO
-

B R OO
-

o r»r OO
-
= B O O
-

-
-

-
N O O B -
-

o
-
o
-
o
-
o
-
o
-

The output represents a numeric term frequency based feature vector for each document like we
mentioned before. To understand it better, we can represent it using the feature names and view it as a
dataframe.

In [6]: vocab = cv.get feature names()
...t pd.DataFrame(cv_matrix, columns=vocab)

Out[6]:

beautiful blue brown dog fox jumps lazy love quick sky today
0 1 1 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0 1 0 1 0
2 0 0 1 1 1 1 1 0 1 0 0
3 0 1 1 1 1 0 1 0 1 0 0
4 1 1 0 0 0 0 0 0 0 2 1
5 0 0 1 1 1 0 1 0 1 0 0

We can clearly see now that each row of the dataframe depicts the term frequency vector for each text
document. Hence the name bag of words because this model represents unstructured text into a bag of
words without taking into account word positions, syntax, or semantics.

Bag of N-Grams Model

We have used single word terms as features in the above mentioned bag of words model. But what if we

also wanted to take into account phrases or collection of words which occur in a sequence? N-grams help

us achieve that. An n-gram is basically a collection of word tokens from a text document such that these
tokens are contiguous and occur in a sequence. Bi-grams indicate n-grams of order 2 (two words), Tri-grams
indicate n-grams of order 3 (three words), and so on. We can easily extend the bag of words model to use a
bag of n-grams model to give us n-gram based feature vectors. The following code computes bi-gram based
features on our corpus.

In [7]: bv = CountVectorizer(ngram range=(2,2))
¢ bv_matrix = bv.fit_transform(norm_corpus)
: bv_matrix = bv_matrix.toarray()
: vocab = bv.get feature names()
: pd.DataFrame(bv_matrix, columns=vocab)

212

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

beautiful | beautiful blue| blue| blue|brown| dog Tox fox| jumps lazy| lazy| love| quick quick sky| sky

sky today | beautiful | dog| sky fox| lazy|Jumps| quick lazy| brown| dog| blue| blue| brown|beautiful| blue
ojo 0 1 0 0 0 0 0 0]] 0 o 0 0 0 1
1|1 1] 1 a 1]] 0 0 1] 0 o a 1 [+] 1]]]
2|0 0 0] 0 1 0 1 1] 1 o 1 o 0 1 0 0
3|0 1] 0 1 0 1 1 0 1 0 o 0 0 1 0 0 0
4|0 1 0 U] 1 1] 0 U] 0 0] 0 o o 0 1 1
5|0 0 0 0 1] 1 1 0 1 o 1 1] 0 0 a 0 o

Figure 4-17. Bi-gram feature vectors for our corpus based on bag of n-grams model

Figure 4-17 clearly shows our bi-gram feature vectors where each feature is a bi-gram of two contiguous
words and the values depict the frequency of that bi-gram in each document. You can use the ngram_range
parameter to extend the n-gram range to get n-grams of higher orders. Typically n-grams until order three
are sufficient for most tasks in Machine Learning and natural language processing.

TF-IDF Model

There are some potential problems which might arise with the Bag of Words model when it is used on large
corpora. Since the feature vectors are based on absolute term frequencies, there might be some terms which
occur frequently across all documents and these will tend to overshadow other terms in the feature set. The
TF-IDF model tries to combat this issue by using a scaling or normalizing factor in its computation. TF-IDF
stands for Term Frequency-Inverse Document Frequency, which uses a combination of two metrics in
its computation, namely: term frequency (tf) and inverse document frequency (idf). This technique was
developed for ranking results for queries in search engines and now it is an indispensable model in the
world of information retrieval and text analytics.

Mathematically, we can define TF-IDF as tfidf = tfx idf, which can be expanded further to be
represented as follows.

tfidf (w,D)=tf (w,D)xidf (w,D) Z#(W’D)Xlog{#wﬂ

Here, tfidf (w, D) is the TF-IDF score for word w in document D. The term #f (w, D) represents the term
frequency of the word w in document D, which can be obtained from the Bag of Words model. The term
idf (w, D) is the inverse document frequency for the term w, which can be computed as the log transform
of the total number of documents in the corpus C divided by the document frequency of the word w,
which is basically the frequency of documents in the corpus where the word w occurs. The following code
depicts TF-IDF based feature engineering on our corpus.

In [8]: from sklearn.feature extraction.text import TfidfVectorizer
¢ tv = TfidfVectorizer(min_df=0., max_df=1., use_idf=True)
¢ tv_matrix = tv.fit_transform(norm_corpus)
¢ tv_matrix = tv_matrix.toarray()

.1 vocab = tv.get feature names()
: pd.DataFrame(np.round(tv_matrix, 2), columns=vocab)

213

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

Out[8]:

beautiful blue brown dog
0 0.60 0.52 0.00 0.00
1 0.46 0.39 0.00 0.00
2 0.00 0.00 0.38 0.38
3 0.00 0.36 0.42 0.42
4 0.36 0.31 0.00 0.00
5 0.00 0.00 0.45 0.45

fox
0.00
0.00
0.38
0.42
0.00
0.45

jumps

0.
.00
.54
.00
.00
.00

O O O oo

00

lazy
0.00
0.00
0.38
0.42
0.00
0.45

love q
.00
.66
.00
.00
.00
.00

O O O O O o

uick
0.00
0.00
0.38
0.42
0.00
0.45

sky
0.60
0.46
0.00
0.00
0.72
0.00

today

0.
.00
.00
.00
.52
.00

O O O oo

00

Thus, the preceding output depicts the TF-IDF based feature vectors for each of our text documents.
Notice how this is a scaled and normalized version as compared to the raw Bag of Words model. Interested
readers who might want to dive into further details of how the internals of this model work can refer to page
181 of Text Analytics with Python (Apress; Dipanjan Sarkar, 2016).

Document Similarity

You can even build on top of the tf-idf based features we engineered in the previous section and use them

to generate new features which can be useful in multiple applications. An example of this is computing
document similarity. This is very useful in domains like search engines, document clustering, and
information retrieval. Document similarity is the process of using a distance or similarity based metric that
can be used to identify how similar a text document is with another document based on features extracted
from the documents like bag of words or tf-idf. Pairwise document similarity in a corpus involves computing
document similarity for each pair of documents in a corpus. Thus if you have C documents in a corpus, you
would end up with a Cx C matrix such that each row and column represents the similarity score for a pair of

documents, which represent the indices at the row and column, respectively.

There are several similarity and distance metrics that are used to compute document similarity. These
include cosine distance/similarity, BM25 distance, Hellinger-Bhattacharya distance, jaccard distance,
and so on. In our analysis, we will be using perhaps the most popular and widely used similarity metric,
cosine similarity. Cosine similarity basically gives us a metric representing the cosine of the angle between
the feature vector representations of two text documents. Figure 4-18 shows some typical feature vector

alignments for text documents.

/o

AN

P

/

Angle close o 0
Cosine simitarity score
closato 1
u and v are very similar o
€ach other

Angle close 0 90
Cosine similarity score

tiose w0

each offver

uand v are not similar to

v

v
Angle close to 180
Cosi Ty score

n opposiie orie
#ach olher

Figure 4-18. Cosine similarity depictions for text document feature vectors (Source: Text Analytics with

Python, Apress)

214

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

From Figure 4-18, we can clearly see that feature vectors having a similar orientation will be very
close to one another and the angle between them will be closer to 0° and thus cosine similarity would
be cos 0° = 1 When cosine similarity is close to cos 90° = 0, the angle between the documents is closer
to 90° indicating they are far apart and hence not very similar. Similarity scores close to -1 indicate the
documents have completely opposite orientation as the angle between them would be closer to 180°.
The following code helps us compute pairwise cosine similarity for all the documents in our sample corpus.

In [9]: from sklearn.metrics.pairwise import cosine similarity
: similarity matrix = cosine similarity(tv_matrix)

.: similarity df = pd.DataFrame(similarity matrix)
¢ similarity df

Out[9]:

0 1 2 3 4 5
0 1.000000 0.753128 0.000000 0.185447 0.807539 0.000000
1 0.753128 1.000000 0.000000 0.139665 0.608181 0.000000
2 0.000000 0.000000 1.000000 0.784362 0.000000 0.839987
3 0.185447 0.139665 0.784362 1.000000 0.109653 0.933779
4 0.807539 0.608181 0.000000 0.109653 1.000000 0.000000
5 0.000000 0.000000 0.839987 0.933779 0.000000 1.000000

From the pairwise similarity matrix obtained in the preceding output, we can clearly see that
documents 0, 1, and 4 have very strong similarity among one another. Also documents 2, 3, and 5 have
strong similarity among themselves. This must indicate they all have some similar features. This is a perfect
example of grouping or clustering that can be solved by unsupervised learning.

Let’s use K-means clustering to try to use the features to see if we can actually cluster or group these
documents based on their feature representations. In K-means clustering, we have an input parameter k,
which specifies the number of clusters it will output using the document features. This clustering method is a
centroid based clustering method, where it tries to cluster these documents into clusters of equal variance. It
tries to create these clusters by minimizing the within-cluster sum of squares measure, also known as inertia.
The following snippet builds a clustering model using our similarity features to cluster our text documents.

In [10]: from sklearn.cluster import KMeans

«..: km = KMeans(n_clusters=2)
...t km.fit_transform(similarity df)

.. cluster labels = km.labels_

: cluster labels = pd.DataFrame(cluster labels, columns=['ClusterlLabel'])
: pd.concat([corpus_df, cluster labels], axis=1)

Out[10]:

Document Category ClusterlLabel
0 The sky is blue and beautiful. weather 0
1 Love this blue and beautiful sky! weather 0
2 The quick brown fox jumps over the lazy dog. animals 1
3 The brown fox is quick and the blue dog is lazy! animals 1
4 The sky is very blue and the sky is very beaut... weather 0
5 The dog is lazy but the brown fox is quick! animals 1

The output obtained clearly shows us that our K-means clustering model has labeled our documents
into two clusters with labels 0 and 1. We can also see that these labels are correct where labels with value
0 indicate documents relevant to weather and labels with value 1 indicate documents relevant to animals.
Thus you can see how useful these features are in document clustering and categorization!

215

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

Topic Models

Besides document terms, phrases and similarities, we can also use some summarization techniques to
extract topic or concept based features from text documents. The idea of topic models revolves around the
process of extracting key themes or concepts from a corpus of documents which are represented as topics.
Each topic can be represented as a bag or collection of words/terms from the document corpus. Together,
these terms signify a specific topic, theme or a concept and each topic can be easily distinguished from other
topics by virtue of the semantic meaning conveyed by these terms. These concepts can range from simple
facts and statements to opinions and outlook. Topic models are extremely useful in summarizing large
corpus of text documents to extract and depict key concepts. They are also useful in extracting features from
text data that capture latent patterns in the data.

There are various techniques for topic modeling and most of them involve some form of matrix
decomposition. Some techniques like Latent Semantic Indexing (LSI) use matrix decomposition operations,
more specifically Singular Valued Decomposition (refer back to important mathematical concepts in
Chapter 1), to split a term-document matrix (transpose of our TF-IDF document-term feature matrix) into
three matrices, U, S & V. You can use the left singular vectors in matrix U and multiply it by the singular
vectors S to get terms and their weights (signifying importance) per topic. You can use scikit-learn or
gensimto use LSI based topic modeling.

Another technique is Latent Dirichlet Allocation (LDA), which uses a generative probabilistic model
where each document consists of a combination of several topics and each term or word can be assigned to
a specific topic. This is similar to pLSI based model (probabilistic LSI). Each latent topic contains a Dirichlet
prior over them in the case of LDA. The math behind this is pretty involving and it would not be possible to
go into details in the current scope. Interested readers can refer to page 241 of Text Analytics with Python
(Apress; Dipanjan Sarkar, 2016) for further details on LDA. For the purpose of feature engineering, you
need to remember that when LDA is applied on a document-term matrix (TF-IDF feature matrix), it gets
decomposed into two main components. A document-topic matrix, which would be the feature matrix we
are looking for and a topic-term matrix, which helps us in looking at potential topics in the corpus. The
following code builds an LDA model to extract features and topics from our sample corpus.

In [11]: from sklearn.decomposition import LatentDirichletAllocation
...: lda = LatentDirichletAllocation(n_topics=2, max_iter=100, random_state=42)

...t dt_matrix = lda.fit_transform(tv_matrix)
: features = pd.DataFrame(dt matrix, columns=['T1', 'T2'])

...: features

Out[11]:

T1 T2
0 0.190615 0.809385
1 0.176860 0.823140
2 0.846148 0.153852
3 0.815229 0.184771
4 0.180563 0.819437
5 0.839140 0.160860

Thus, the dt_matrix refers to the document-topic matrix giving us two features since we chose number
of topics to be 2. You can also use the other matrix obtained from the decomposition, the topic-term matrix
to see the topics extracted from our corpus using the LDA model using the following code.

In [12]: tt_matrix = lda.components_
...: for topic_weights in tt_matrix:
topic = [(token, weight) for token, weight in zip(vocab, topic_weights)]
topic = sorted(topic, key=lambda x: -x[1])

216

http://dx.doi.org/10.1007/978-1-4842-3207-1_1

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

topic = [item for item in topic if item[1] > 0.6]
print(topic)
.. print()
[("fox', 1.7265536238698524), ('quick', 1.7264910761871224), ('dog', 1.7264019823624879),
("brown', 1.7263774760262807), ('lazy', 1.7263567668213813), ('jumps', 1.0326450363521607),
('blue', 0.7770158513472083)]

[("sky', 2.263185143458752), ('beautiful’, 1.9057084998062579), ('blue',
1.7954559705805626), ('love', 1.1476805311187976), ('today', 1.0064979209198706)]

The preceding output represents each of the two topics as a collection of terms and their importance
is depicted by the corresponding weight. It is definitely interesting to see that the two topics are quite
distinguishable from each other by looking at the terms. The first topic shows terms relevant to animals and
the second topic shows terms relevant to weather. This is reinforced by applying our unsupervised K-means
clustering algorithm on our document-topic feature matrix (dt_matrix) using the following code snippet.

In [13]: km = KMeans(n_clusters=2)
..t km.fit_transform(features)
.t cluster labels = km.labels
: cluster labels = pd.DataFrame(cluster labels, columns=['ClusterLabel'])
: pd.concat([corpus_df, cluster labels], axis=1)

Out[13]:

Document Category Clusterlabel
0 The sky is blue and beautiful. weather 0
1 Love this blue and beautiful sky! weather 0
2 The quick brown fox jumps over the lazy dog. animals 1
3 The brown fox is quick and the blue dog is lazy! animals 1
4 The sky is very blue and the sky is very beaut... weather 0
5 The dog is lazy but the brown fox is quick! animals 1

This clearly makes sense and we can see that by just using two topic-model based features, we are still
able to cluster our documents efficiently!

Word Embeddings

There are several advanced word vectorization models that have recently gained a lot of prominence. Almost
all of them deal with the concept of word embeddings. Basically, word embeddings can be used for feature
extraction and language modeling. This representation tries to map each word or phrase into a complete
numeric vector such that semantically similar words or terms tend to occur closer to each other and

these can be quantified using these embeddings. The word2vec model is perhaps one of the most popular
neural network based probabilistic language models and can be used to learn distributed representational
vectors for words. Word embeddings produced by word2vec involve taking in a corpus of text documents,
representing words in a large high dimensional vector space such that each word has a corresponding vector
in that space and similar words (even semantically) are located close to one another, analogous to what we
observed in document similarity earlier.

The word2vec model was released by Google in 2013 and uses a neural network based implementation
with architectures like continuous Bag of Words and Skip-Grams to learn the distributed vector
representations of words in a corpus. We will be using the gensim framework to implement the same model
on our corpus to extract features. Some of the important parameters in the model are explained briefly as
follows.

217

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

e size: Represents the feature vector size for each word in the corpus when
transformed.

e window: Sets the context window size specifying the length of the window of words to
be taken into account as belonging to a single, similar context when training.

e min_count: Specifies the minimum word frequency value needed across the corpus
to consider the word as a part of the final vocabulary during training the model.

e sample: Used to downsample the effects of words which occur very frequently.

The following snippet builds a word2vec embedding model on the documents of our sample corpus.
Remember to tokenize each document before passing it to the model.

In [14]: from gensim.models import word2vec

...t wpt = nltk.WordPunctTokenizer()
: tokenized corpus = [wpt.tokenize(document) for document in norm_corpus]

: # Set values for various parameters
...: feature size = 10 # Word vector dimensionality
...: window_context = 10 # Context window size
: min_word count = 1 # Minimum word count
: sample = 1e-3 # Downsample setting for frequent words

: w2v_model = word2vec.Word2Vec(tokenized corpus, size=feature size,
window=window_context, min_count = min_word_count,
ceat sample=sample)

Using TensorFlow backend.

Each word in the corpus will essentially now be a vector itself of size 10. We can verify the same using
the following code.

In [15]: w2v_model.wv['sky']
Out[15]:
array([0.02626196, -0.02171229, -0.04910386, 0.0194816 , 0.01649994,
0.01200452, 0.04641563, 0.01844106, 0.02693636, -0.02992732], dtype=float32)

A question might arise in your mind now that so far, we had feature vectors for each complete
document, but now we have vectors for each word. How on earth do we represent entire documents now?
We can do that using various aggregation and combinations. A simple scheme would be to use an averaged
word vector representation, where we simply sum all the word vectors occurring in a document and then
divide by the count of word vectors to represent an averaged word vector for the document. The following
code enables us to do the same.

In [16]: def average word vectors(words, model, vocabulary, num features):

feature vector = np.zeros((num_features,),dtype="float64")
nwords = 0.

for word in words:

if word in vocabulary:
nwords = nwords + 1.

218

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

feature vector = np.add(feature vector, model[word])

if nwords:
feature vector = np.divide(feature vector, nwords)

return feature_ vector

.: def averaged word vectorizer(corpus, model, num features):

In [17]:

vocabulary = set(model.wv.index2word)
features = [average word vectors(tokenized sentence, model, vocabulary,
num_features)
for tokenized sentence in corpus]
return np.array(features)

w2v_feature_array = averaged_word vectorizer(corpus=tokenized corpus, model=w2v_model,
num_features=feature_size)

: pd.DataFrame(w2v_feature array)

Qut[17]:

Figure 4-

0 1 2 3 4 5 6 7 8 9

o

-0.010540| -0.015367 | 0.005373 | -0.020741 | 0.030717 |-0.022407 | -0.001724 | 0.004722 | 0.026881 |0.011909
-0.017797 | -0.013693 | -0.003599 | -0.015436 | 0.022831 |-0.017905|0.010470 |0.001540 | 0.025658 |0.016208

-

-0.020869 | -0.018273 | -0.019681 | -0.004124 | -0.010980| 0.001654 |-0.0013100.003395 |0.003760 |0.010851
-0.017561 | -0.017866 | -0.016438 | -0.007601 | -0.005687 | -0.008843 | -0.002385 | 0.001444 | 0.005643 |0.012638

0.002371 | -0.006731 | 0.017480 |-0.014220|0.022088 |-0.014882|0.003067 |0.002605 |0.021167 |0.006461

oW N

-0.018306 | -0.012056 | -0.015671 | -0.011617 | -0.011667 | -0.005490 | 0.005404 |-0.003512|-0.003198 | 0.013306

19. Averaged word vector feature set for our corpus documents

Thus, we have our averaged word vector based feature set for all our corpus documents, as depicted
by the dataframe in Figure 4-19. Let’s use a different clustering algorithm this time known as Affinity
Propagation to try to cluster our documents based on these new features. Affinity Propagation is based on
the concept of message passing and you do not need to specify the number of clusters beforehand like you
did in K-means clustering.

In [18]:

from sklearn.cluster import AffinityPropagation

..t ap = AffinityPropagation()
..t ap.fit(w2v_feature_array)
.t cluster labels = ap.labels
: cluster labels = pd.DataFrame(cluster labels, columns=['Clusterlabel'])

out[18]:

0
1
2

: pd.concat([corpus_df, cluster labels], axis=1)

Document Category ClusterlLabel

The sky is blue and beautiful. weather 0

Love this blue and beautiful sky! weather 0

The quick brown fox jumps over the lazy dog. animals 1

219

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

3 The brown fox is quick and the blue dog is lazy! animals 1
4 The sky is very blue and the sky is very beaut... weather 0
5 The dog is lazy but the brown fox is quick! animals 1

The preceding output uses the averaged word vectors based on word embeddings to cluster
the documents in our corpus and we can clearly see that it has obtained the right clusters! There are
several other schemes of aggregating word vectors like using TF-IDF weights along with the word vector
representations. Besides this there have been recent advancements in the field of Deep Learning where
architectures like RNNs and LSTMs are also used for engineering features from text data.

Feature Engineering on Temporal Data

Temporal data involves datasets that change over a period of time and time-based attributes are of
paramount importance in these datasets. Usually temporal attributes include some form of data, time,

and timestamp values and often optionally include other metadata like time zones, daylight savings time
information, and so on. Temporal data, especially time-series based data is extensively used in multiple
domains like stock, commodity, and weather forecasting. You can load feature_engineering temporal.

py directly and start running the examples or use the jupyter notebook, Feature Engineering on Temporal
Data.ipynb, for a more interactive experience. Let’s load the following dependencies before we move on to
acquiring some temporal data.

In [1]: import datetime
: import numpy as np
: import pandas as pd
.t from dateutil.parser import parse
...t import pytz

We will now use some sample time-based data as our source of temporal data by loading the following
values in a dataframe.

In [2]: time_stamps = ['2015-03-08 10:30:00.360000+00:00", '2017-07-13 15:45:05.755000-07:00",
'2012-01-20 22:30:00.254000+05:30", '2016-12-25

00:30:00.000000+10:00"]
...t df = pd.DataFrame(time stamps, columns=['Time'])
coen df

Out[2]:

Time

2015-03-08 10:30:00.360000+00:00

2017-07-13 15:45:05.755000-07:00

2012-01-20 22:30:00.254000+05:30

2016-12-25 00:30:00.000000+10:00

w N = O

Of course by default, they are stored as strings or text in the dataframe so we can convert time into
Timestamp objects by using the following code snippet.

In [3]: ts_objs = np.array([pd.Timestamp(item) for item in np.array(df.Time)])
...t df['TS obj'] = ts_objs
...: ts_objs

Out[3]:

array([Timestamp('2015-03-08 10:30:00.360000+0000', tz='UTC'),

220

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

Timestamp('2017-07-13 15:45:05.755000-0700", tz='pytz.FixedOffset(-420)"),
Timestamp('2012-01-20 22:30:00.254000+0530", tz='pytz.FixedOffset(330)"'),
Timestamp('2016-12-25 00:30:00+1000', tz='pytz.FixedOffset(600)')], dtype=object)

You can clearly see from the temporal values that we have multiple components for each Timestamp
object which include date, time, and even a time based offset, which can be used to identify the time zone
also. Of course there is no way we can directly ingest or use these features in any Machine Learning model.
Hence we need specific strategies to extract meaningful features from this data. In the following sections, we
cover some of these strategies that you can start using on your own temporal data in the future.

Date-Based Features

Each temporal value has a date component that can be used to extract useful information and features
pertaining to the date. These include features and components like year, month, day, quarter, day of the
week, day name, day and week of the year, and many more. The following code depicts how we can obtain
some of these features from our temporal data.

In [4]: df['Year'] = df['TS obj'].apply(lambda d: d.year)
...t df['Month'] = df['TS ob]].apply(lambda d: d.month)

..: df['Day'] = df['TS_obj'].apply(lambda d: d.day)

..: df['DayOfWeek'] = df['TS Obj].apply(lambda d: d.dayofweek)
...t df['DayName'] = df['TS_obj'].apply(lambda d: d.weekday name)
...t df['DayOfYear'] = df['TS obj'].apply(lambda d: d.dayofyear)

..t df['WeekOfYear'] = df['TS obj'].apply(lambda d: d.weekofyear)

: df['Quarter'] = df['TS obj'].apply(lambda d: d.quarter)

[
]
]

: df[['Time', 'Year', 'Month', 'Day', 'Quarter’,
'DayOfleek’, 'DayName', 'DayOfYear', 'WeekOfYear']]

Out[4]:

Time | Year | Month | Day | Quarter | DayOfWeek | DayName | DayOfYear | WeekOfYear
0| 2015-03-08 10:30:00.360000+00:00 | 2015 |3 8 |1 6 Sunday |67 10
1| 2017-07-13 15:45:05.755000-07:00 | 2017 |7 13 |3 3 Thursday |194 28
2(2012-01-20 22:30:00.254000+05:30 | 2012 | 1 20 |1 4 Friday 20 3
3(2016-12-25 00:30:00.000000+10:00 | 2016 | 12 25 |4 6 Saturday |360 51

Figure 4-20. Date based features in temporal data

The features depicted in Figure 4-20 show some of the attributes we talked about earlier and have
been derived purely from the date segment of each temporal value. Each of these features can be used
as categorical features and further feature engineering can be done like one hot encoding, aggregations,
binning, and more.

221

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

Time-Based Features

Each temporal value also has a time component that can be used to extract useful information and features
pertaining to the time. These include attributes like hour, minute, second, microsecond, UTC offset, and
more. The following code snippet extracts some of the previously mentioned time-based features from our
temporal data.

In [5] df['Hour'] = df['TS obj'].apply(lambda d: d.hour)
1 df['Minute'] = df[TS obj'].apply(lambda d: d.minute)
..t df['Second'] = df['TS obj'].apply(lambda d: d.second)
.1 df['MUsecond'] = df['TS_obj'].apply(lambda d: d.microsecond)
: df['UTC offset'] = df['TS obj'].apply(lambda d: d.utcoffset())

eo.t df[['Time', 'Hour', 'Minute', 'Second', 'MUsecond', 'UTC offset']]

Time | Hour | Minute | Second | MUsecond UTC oftset
360000 | 00:00:00
755000 | -1 days +17:00:00
254000 05:30:00

2015-03-08 10:30:00.360000+00:00(10 |30
2017-07-13 15:45:05.7565000-07:00 |15 |45
2012-01-20 22:30:00.254000+05:30| 22 |30

WDIN|= O
o|lo|lwn|o

2016-12-25 00:30:00.000000+10:00 (0 30 0 10:00:00

Figure 4-21. Time based features in temporal data

The features depicted in Figure 4-21 show some of the attributes we talked about earlier which have
been derived purely from the time segment of each temporal value. We can further engineer these features
based on categorical feature engineering techniques and even derive other features like extracting time
zones. Let’s try to use binning to bin each temporal value into a specific time of the day by leveraging the
Hour feature we just obtained.

In [6]: hour bins = [-1, 5, 11, 16, 21, 23]
..: bin_names = ['Late Night', 'Morning', 'Afternoon’', 'Evening', 'Night']
: df['TimeOfDayBin'] = pd.cut(df['Hour'],
bins=hour bins, labels=bin names)
: df[['Time', 'Hour', 'TimeOfDayBin']]

Out[6]:

Time Hour TimeOfDayBin
0 2015-03-08 10:30:00.360000+00:00 10 Morning
1 2017-07-13 15:45:05.755000-07:00 15 Afternoon
2 2012-01-20 22:30:00.254000+05:30 22 Night
3 2016-12-25 00:30:00.000000+10:00 0 Late Night

Thus you can see from the preceding output that based on hour ranges (0-5, 5-11, 11-16, 16-21,
21-23) we have assigned a specific time of the day bin for each temporal value. The UTC offset component
of the temporal data is very useful in knowing how far ahead or behind is that time value from the UTC
(Coordinated Universal Time), which is the primary time standard that clocks and time are regulated from.
This information can also be used to engineer new features like potential time zones from which each
temporal value might have been obtained. The following code helps us achieve the same.

222

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

In [7]: df['TZ_info'] = df['TS_obj'].apply(lambda d: d.tzinfo)
...t df['TimeZones'] = df['TS obj'].apply(lambda d: list({d.astimezone(tz).tzname()
for tz in map(pytz.timezone,
pytz.all timezones_set)
if d.astimezone(tz).utcoffset() == d.utcoffset()}))

: df[['Time', 'UTC offset', 'TZ info', 'TimeZones']]

Time UTC offset TZ Info TimeZeones
0| 2015-03-08 10:30:00.360000+00:00 | 00:00:00 uTc [WET, UTC, UCT, GMT]
1| 2017-07-13 15:45:05.755000-07:00 | -1 days +17:00:00 | pytz FixedOffset{-420) | [MST. GMT+7, PDT]
2| 2012-01-20 254000+05:30 pylz.FixedOflset(330) |[15T]
3| 2016-12-25 00:30:00.000000+10:00 | 10:00:00 pytz.FixedOffset{600) | [VLAT, ChST, AEST, PGT, DDUT, GMT-10, CHUT]

Figure 4-22. Time zone relevant features in temporal data

Thus as we mentioned earlier, the features depicted in Figure 4-22 show some of the attributes
pertaining to time zone relevant information for each temporal value. We can also get time components in
other formats, like the Epoch, which is basically the number of seconds that have elapsed since January 1,
1970 (midnight UTC) and the Gregorian Ordinal, where January 1st of year 1 is represented as 1 and so on.
The following code helps us extract these representations. See Figure 4-23.

..t df["Epoch'] = df['TimeUTC'].apply(lambda d: d.timestamp())

In [8]: df['TimeUTC'] = df['TS _obj'].apply(lambda d: d.tz_convert(pytz.utc))
cet ['T
..t df['GregOrdinal'] = df['TimeUTC'].apply(lambda d: d.toordinal())

: df[['Time", 'TimeUTC', 'Epoch', 'GregOrdinal']]

Out[8]:
Time TimeuTC Epoch | GregOrdinal

=]

2015-03-08 10:30:00.360000+00:00 | 2015-03-08 10:30:00.360000+00:00 | 1.425811e+09 | 735665
2017-07-13 15:45:05.755000-07:00 | 2017-07-13 22:45:05.755000+00:00 | 1.499086e+09 | 736523

-

L]

2012-01-20 22:30:00.254000+05:30 | 2012-01-20 17:00:00.254000+00:00 | 1.327079%e+09 | 734522
2016-12-25 00:30:00.000000+10:00 | 2016-12-24 14:30:00+00:00 1.482590e+09 | 736322

[~]

Figure 4-23. Time components depicted in various representations

Do note we converted each temporal value to UTC before deriving the other features. These alternate
representations of time can be further used for easy date arithmetic. The epoch gives us time elapsed in
seconds and the Gregorian ordinal gives us time elapsed in days. We can use this to derive further features
like time elapsed from the current time or time elapsed from major events of importance based on the
problem we are trying to solve. Let’s compute the time elapsed for each temporal value since the current
time. See Figure 4-24.

In [9]: curr ts = datetime.datetime.now(pytz.utc)
...: # compute days elapsed since today
...t df['DaysElapsedEpoch'] = (curr ts.timestamp() - df['Epoch']) / (3600*24)
..: df['DaysElapsedOrdinal'] = (curr_ts.toordinal() - df['GregOrdinal'])

: df[['Time', 'TimeUTC', 'DaysElapsedEpoch', 'DaysElapsedOrdinal']]

223

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

Time TimeUTC | DaysElapsedEpoch | DaysElapsedOrdinal
0| 2015-03-08 10:30:00.360000+00:00 | 2015-03-08 10:30:00.360000+00:00 | 860.207396 860
1| 2017-07-13 15:45:05.755000-07:00 | 2017-07-13 22:45:05.755000+00:00 | 1.696917 2
2| 2012-01-20 22:30:00.254000+05:30 | 2012-01-20 17:00:00.254000+00:00 | 2002.936564 2003
3| 2016-12-25 00:30:00.000000+10:00 | 2016-12-24 14:30:00+00:00 203.040734 203

Figure 4-24. Deriving elapsed time difference from current time

Based on our computations, each new derived feature should give us the elapsed time difference
between the current time and the time value in the Time column (actually TimeUTC since conversion to UTC
is necessary). Both the values are almost equal to one another, which is expected. Thus you can use time and
date arithmetic to extract and engineer more features which can help build better models. Alternate time
representations enable you to do date time arithmetic directly instead of dealing with specific API methods
of Timestamp and datetime objects from Python. However you can use any method to get to the results you
want. It’s all about ease of use and efficiency!

Feature Engineering on Image Data

Another very popular format of unstructured data is images. Sound and visual data in the form of images,
video, and audio are very popular sources of data which pose a lot of challenge to data scientists in terms
of processing, storage, feature extraction and modeling. However their benefits as sources of data are quite
rewarding especially in the field of artificial intelligence and computer vision. Due to the unstructured
nature of data, it is not possible to directly use images for training models. If you are given a raw image, you
might have a hard time trying to think of ways to represent it so that any Machine Learning algorithm can
utilize it for model training. There are various strategies and techniques that can be used in this case to
engineer the right features from images. One of the core principles to remember when dealing with images
is that any image can be represented as a matrix of numeric pixel values. With that thought in mind, let’s get
started! You can load feature_engineering_image.py directly and start running the examples or use the
jupyter notebook, Feature Engineering on Image Data.ipynb, for a more interactive experience. Let’s
start by loading the necessary dependencies and configuration settings.

In [1]: import skimage
...: import numpy as np
...: import pandas as pd
...: import matplotlib.pyplot as plt
...: from skimage import io

...t %matplotlib inline

The scikit-image (skimage) library is an excellent framework consisting of several useful interfaces
and algorithms for image processing and feature extraction. Besides this, we will also leverage the mahotas
framework, which is useful in computer vision and image processing. Open CV is another useful framework
that you can check out if interested in aspects pertaining to computer vision. Let’s now look at ways to
represent images as useful feature vector representations.

224

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

Image Metadata Features

There are tons of useful features obtainable from the image metadata itself without even processing the
image. Most of this information can be found from the EXIF data, which is usually recorded for each image
by the device when the picture is being taken. Following are some of the popular features that are obtainable
from the image EXIF data.

e Image create date and time

e Image dimensions

e Image compression format

e Device make and model

e Image resolution and aspect ratio

e Image artist

e Flash, aperture, focal length, and exposure

For more details on what other data points can be used as features from image EXIF metadata,
you can refer to https://sno.phy.queensu.ca/~phil/exiftool/TagNames/EXIF.html, which lists the
possible EXIF tags.

Raw Image and Channel Pixels

An image can be represented by the value of each of its pixels as a two dimensional array. We can leverage
numpy arrays for this. However, color images usually have three components also known as channels. The
R, G, and B channels stand for the red, green, and blue channels, respectively. This can be represented as

a three dimensional array (m, n, c) where mindicates the number of rows in the image, n indicates the
number of columns. These are determined by the image dimensions. The c indicates which channel it
represents (R, G or B). Let’s load some sample color images now and try to understand their representation.

In [2]: cat = io.imread('datasets/cat.png')
...t dog = io.imread('datasets/dog.png')
..: df = pd.DataFrame(['Cat', 'Dog'], columns=['Image'])

: print(cat.shape, dog.shape)
(168 3oo, 3) (168, 300, 3)

In [3]: fig = plt.figure(figsize = (8,4))
...t axl = fig.add subplot(1,2, 1)
..: axl.imshow(cat)
: ax2 = fig.add subplot(1,2, 2)
: ax2.imshow(dog)

225

https://sno.phy.queensu.ca/~phil/exiftool/TagNames/EXIF.html

CHAPTER 4 ' FEATURE ENGINEERING AND SELECTION

out[3]:

S0 100 150 200 250 300
Figure 4-25. Our two sample color images

We can clearly see from Figure 4-25 that we have two images of a cat and a dog having dimensions
168x300 pixels where each row and column denotes a specific pixel of the image. The third dimension
indicates these are color images having three color channels. Let’s now try to use numpy indexing to slice out
and extract the three color channels separately for the dog image.

In [4]: dog r = dog.copy() # Red Channel

.: dog r[:,:,1] = dog_r[:,:,2] = 0 # set G,B pixels = 0
.: dog_g = dog.copy() # Green Channel
.: dog g[:,:,0] = dog r[:,:,2] = O # set R,B pixels = 0
...t dog b = dog.copy() # Blue Channel
...t dog b[:,:,0] = dog b[:,:,1] = 0 # set R,G pixels = 0

..: plot_image = np.concatenate((dog_r, dog g, dog b), axis=1)
..t plt.figure(figsize = (10,4))
: plt.imshow(plot_image)

out[4]:

150

0 100 200 300 400 500 600 700 800 %00

Figure 4-26. Extracting red, green, and blue channels from our color RGB image

We can clearly see from Figure 4-26 how we can easily use numpy indexing and extract out the three
color channels from the sample image. You can now refer to any of these channel’s raw image pixel matrix
and even flatten it if needed to form a feature vector.

In [5]: dog 1[:,:,0]

Out[5]:

array([[160, 160, 160, ..., 113, 113, 112],
[160, 160, 160, ..., 113, 113, 112],

ey

226

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

[165, 165, 165, ..., 212, 211, 210],
[165, 165, 165, ..., 210, 210, 209],
[164, 164, 164, ..., 209, 209, 209]], dtype=uint8)

This image pixel matrix is a two-dimensional matrix so you can extract features from this further or even
flatten it to a one-dimensional vector to use as inputs for any Machine Learning algorithm.

Grayscale Image Pixels

If you are dealing with color images, it might get difficult working with multiple channels and
three-dimensional arrays. Hence converting images to grayscale is a nice way of keeping the necessary pixel
intensity values but getting an easy to process two-dimensional image. Grayscale images usually capture the
luminance or intensity of each pixel such that each pixel value can be computed using the equation

Y=0.2125xR+0.7154x G+ 0.0721 x B

Where R, G & B are the pixel values of the three channels and Y captures the final pixel intensity
information and is usually ranges from 0(complete intensity absence - black) to 1(complete intensity
presence - white). The following snippet shows us how to convert RGB color images to grayscale and extract
the raw pixel values, which can be used as features.

In [6]: from skimage.color import rgb2gray

..t cgs = rgb2gray(cat)
...t dgs = rgb2gray(dog)

: print('Image shape:', cgs.shape, '\n")

.t # 2D pixel map
«..t print('2D image pixel map")
...t print(np.round(cgs, 2), '\n')

..t # flattened pixel feature vector
...t print('Flattened pixel map:', (np.round(cgs.flatten(), 2)))
Image shape: (168, 300)

2D image pixel map
[[0.42 0.41 0.41 ...,
[0.41 0.41 0.4 ...,

0.52 0.53]
.51 0.52 0.54]

o O
vl U

cees
[0.12 0.12 0.1 ..., 0.51 0.51 0.51]
[0,22 0.12 0.1 ..., 0.51 0.51 0.51]]

Flattened pixel map: [0.42 0.41 0.41 ..., 0.51 0.51 0.51]

Binning Image Intensity Distribution

We already obtained the raw image intensity values for the grayscale images in the previous section. One
approach would be to use these raw pixel values themselves as features. Another approach would be to binning
the image intensity distribution based on intensity values using a histogram and using the bins as features. The
following code snippet shows us how the image intensity distribution looks for the two sample images.

227

CHAPTER 4 ' FEATURE ENGINEERING AND SELECTION

In [7]: fig = plt.figure(figsize = (8,4))
...t axl = fig.add subplot(2,2, 1)
..t ax1l.imshow(cgs, cmap="gray")
...t ax2 = fig.add subplot(2,2, 2)
...t ax2.imshow(dgs, cmap="gray"')
..t ax3 = fig.add subplot(2,2, 3)
..: c_freq, c_bins, c_patches = ax3.hist(cgs.flatten(), bins=30)
..t ax4 = fig.add subplot(2,2, 4)
...t d_freq, d _bins, d _patches = ax4.hist(dgs.flatten(), bins=30)

0

0.0 02 04 0.6 08 0.0 02 04 06 08 10

Figure 4-27. Binning image intensity distributions with histograms

As we mentioned, image intensity ranges from 0 to 1 and is evident by the x-axes depicted in
Figure 4-27. The y-axes depict the frequency of the respective bins. We can clearly see that the dog image
has more concentration of the bin frequencies around 0.6 - 0.8 indicating higher intensity and the reason
for that being that the Labrador dog is white in color and white has a high intensity value like we mentioned
in the previous section. The variables c_freq, c_bins, and d_freq, d_bins can be used to get the numeric
values pertaining to the bins and used as features.

Image Aggregation Statistics

We already obtained the raw image intensity values for the grayscale images in the previous section.
One approach would be to use them as features directly or use some level of aggregations and statistical
measures which can be obtained from the pixels and intensity. We already saw an approach of binning
intensity values using histograms. In this section, we use descriptive statistical measures and aggregations to
compute specific features from the image pixel values.

We can compute RGB ranges for each image by basically subtracting the maximum from the minimum
value for pixel values in each channel. The following code helps us achieve this.

In [8]: from scipy.stats import describe

...: cat_rgb
...: dog_rgb

cat.reshape((168*300), 3).T
dog.reshape((168*300), 3).T

228

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

...1 CS
..: ds

describe(cat_rgb, axis=1)
describe(dog rgb, axis=1)

..: cat_rgb range = cs.minmax[1] - cs.minmax[0]
..: dog_rgb range = ds.minmax[1] - ds.minmax[0]
: rgb range df = pd.DataFrame([cat_rgb range, dog rgb range],
. columns=['R_range', 'G range', 'B range'])
: pd.concat([df, rgb range df], axis=1)

Out[8]:

Image R_range G_range B_range
0 Cat 240 223 235
1 Dog 246 250 246

We can then use these range features as specific characteristic attributes of each image. Besides this, we
can also compute other metrics like mean, median, variance, skewness, and kurtosis for each image channel
as follows.

In [9]: cat_stats= np.array([np.round(cs.mean, 2),np.round(cs.variance, 2),
: np.round(cs.kurtosis, 2),np.round(cs.skeuwness, 2),
: np.round(np.median(cat_rgb, axis=1), 2)]).flatten()
..: dog_stats= np.array([np.round(ds.mean, 2),np.round(ds.variance, 2),
np.round(ds.kurtosis, 2),np.round(ds.skewness, 2),
np.round(np.median(dog rgb, axis=1), 2)]).flatten()

: stats_df = pd.DataFrame([cat_stats, dog stats],
columns=['R_mean', 'G mean', 'B mean', 'R var', 'G var',
'B_var', 'R_kurt', 'G_kurt', 'B_kurt', 'R_skew',
'G_skew', 'B skew', 'R_med', 'G med', 'B med'])
: pd.concat([df, stats df], axis=1)

- v -+ T T T
Imngo!l__mun G mean| B mean| R var| G var| B var|R_kurt|G_kurt|B_kurt R_slw[_skew | B_skew R_med|G_med|B_med

o

Cat (12748 (11880 |(111.04 |3054.042863.78|3003.05(-063 |-0.77 |-0.04 |-048

[
H.so 026 1400 |132.0 |[120.0
1|Dog [18446 17346 [16077 |1887.71|1776.00) 157473130 [224 |232 |06 [.;

A2 -1.00 1850 |169.0 |165.0

Figure 4-28. Image channel aggregation statistical features

We can observe from the features obtained in Figure 4-28 that the mean, median, and kurtosis values
for the various channels for the dog image are mostly greater than corresponding ones in the cat image.
Variance and skewness are however more for the cat image.

Edge Detection

One of the more interesting and sophisticated techniques involve detecting edges in an image. Edge
detection algorithms can be used to detect sharp intensity and brightness changes in an image and find
areas of interest. The canny edge detector algorithm developed by John Canny is one of the most widely
used edge detector algorithms today. This algorithm typically involves using a Gaussian distribution with
a specific standard deviation ¢ (sigma) to smoothen and denoise the image. Then we apply a Sobel filter
to extract image intensity gradients. Norm value of this gradient is used to determine the edge strength.

229

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

Potential edges are thinned down to curves with width of 1 pixel and hysteresis based thresholding is used
to label all points above a specific high threshold as edges and then recursively use the low threshold value
to label points above the low threshold as edges connected to any of the previously labeled points. The
following code applied the canny edge detector to our sample images.

In [10]: from skimage.feature import canny

...: cat_edges
: dog_edges

canny(cgs, sigma=3)
canny(dgs, sigma=3)

..t fig = plt.figure(figsize = (8,4))
...t axl = fig.add subplot(1,2, 1)
...t axl.imshow(cat_edges, cmap="'binary")
...t ax2 = fig.add_subplot(1,2, 2)

: ax2.imshow(dog_edges, cmap="binary")

Out[10]:
0 - 4 . " § 0 -
S TS ”~ e
7A (IING 0] N 7 N
L~ NGy A b .
50 1 1 ’-.;)-/'. ? o\ \ 50] ~ O |
s, 4 4 R \ — i
O e IXEER :
100 -.},‘\\{ /({‘ -y ",-‘,\X -’f 100 ’ \‘ 1 8 s] n
A el A & . \,..... Slr b
N A NN S ST [
e) Y ™ 2 A\ / ¢
1501 v ST =~/ 150 h—t ‘

L} £
0 S0 100 150 200 250 300 0 50 100 150 200 250 300

Figure 4-29. Canny edge detection to extract edge based features

The image plots based on the edge feature arrays depicted in Figure 4-29 clearly show the prominent
edges of our cat and dog. You can use these edge feature arrays (cat_edges and dog_edges) by flattening
them, extracting pixel values and positions pertaining to the edges (non-zero values), or even by aggregating
them like finding out the total number of pixels making edges, mean value, and so on.

Object Detection

Another interesting technique in the world of computer vision is object detection where features useful

in highlighting specific objects in the image are detected and extracted. The histogram of oriented
gradients, also known as HOG, is one of the techniques that’s extensively used in object detection. Going
into the details of this technique would not be possible in the current scope but for the process of feature
engineering, you need to remember that the HOG algorithm works by following a sequence of steps similar
to edge detection. The image is normalized and denoised to remove excess illumination effects. First

order image gradients are computed to capture image attributes like contour, texture, and so on. Gradient
histograms are built on top of these gradients based on specific windows called cells. Finally these cells

are normalized and a flattened feature descriptor is obtained, which can be used as a feature vector for our
models. The following code shows the HOG object detection technique on our sample images.

In [11]: from skimage.feature import hog
...: from skimage import exposure

230

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

hog(cgs, orientations=8, pixels per cell=(8, 8),
. cells per block=(3, 3), visualise=True)
: fd_dog, dog hog = hog(dgs, orientations=8, pixels per cell=(8, 8),
cells_per_block=(3, 3), visualise=True)

: fd_cat, cat_hog

...: # rescaling intensity to get better plots
: cat_hogs = exposure.rescale_intensity(cat_hog, in _range=(0, 0.04))
: dog_hogs = exposure.rescale_intensity(dog hog, in _range=(0, 0.04))

...: fig = plt.figure(figsize = (10,4))
...t axl = fig.add subplot(1,2, 1)
.1 axl.imshow(cat_hogs, cmap='binary")
: ax2 = fig.add_subplot(1,2, 2)
: ax2.imshow(dog hogs, cmap='binary")

Out[11]:
0 S— Y ’ 0 E—
irr .-........\.._....;}}},-.,” o et e s -y
R o e LR (R SR R R) %
- P IS R P Py F R L LT Y ey e 25 4 P i
BSSSETECLESERFPY Y RS SRR T S SR e -
b Rl I Y Ll -y FENT | iy - " St
1 VANRRNNASL JF ARALL Fara N 1 1 14 T8N Y ~
S0 A 50
CAANRARN ANl S LT RAR G -l s . - - L] — mAE N
. AARNS AL IS L LA A R \ i\ P
75 =~ R IRy “ < h - 75 1 X S i
P~ e i L e i R AN Yiis
b bl e L LR T £ &P AN VALK F Y L e N ¥) ‘Y
- R Ll T e s ~ SRRV, y [EAS T Y T ZARY!
10 poened b o 1 3 13 B E EHREL EL 2 b 15 100 NN 9t i BRI B R
;:-\:\\:-‘--,..414\\-..;;\.;; . i \:1,’-;\.;!1 i)
B e EATL I E 7 B S “whiid <4 AL S
125 Dt s o vt 3, i 0 B et i 4 T 125 WY, - Y
Lr L] -\;r..‘:\.\:-p;/:] .\Q_-{;. LW |]
d itN\msap o LR L L 4 \ LR 1 i]
150 NN d g tvi-embicbblnets 150 <220 i i
At t ¥t [A]
T T T
0 50 100 150 200 250 300 0 50 100 150 200 250 300

Figure 4-30. HOG object detector to extract features based on object detection

The image plots in Figure 4-30 show us how the HOG detector has identified the objects in our sample
images. You can also get the flattened feature descriptors as follows.

In [12]: print(fd cat, fd_cat.shape)
[0.00288784 0.00301086 0.0255757 ..., O. 0. 0.] (47880,)

Localized Feature Extraction

We have talked about aggregating pixel values from two-dimensional image or feature matrices and also
flattening them into feature vectors. Localized feature extraction based techniques are slightly better
methods which try to detect and extract localized feature descriptors on various small localized regions of
our input images. This is hence rightly named localized feature extraction. We will be using the popular and
patented SURF algorithm invented by Herbert Bay, et al. SURF stands for Speeded Up Robust Features. The
main idea is to get scale invariant local feature descriptors from images which can be used later as image
features. This algorithm is similar to the popular SIFT algorithm. There are mainly two major phases in this
algorithm. The first phase is to detect points of interest using square shaped filters and hessian matrices. The
second phase is to build feature descriptors by extracting localized features around these points of interest.
There are usually computed by taking a localized square image region around a point of interest and then
aggregating Haar wavelet responses at specific interval based sample points. We use the mahotas Python
framework for extracting SURF feature descriptors from our sample images.

231

https://en.wikipedia.org/wiki/Herbert_Bay#Herbert Bay

CHAPTER 4 ' FEATURE ENGINEERING AND SELECTION

In [13]: from mahotas.features import surf
: import mahotas as mh

..t cat_mh = mh.colors.rgb2gray(cat)
..t dog mh = mh.colors.rgb2gray(dog)

: cat_surf = surf.surf(cat_mh, nr_octaves=8, nr_scales=16, initial step size=1,
threshold=0.1, max_points=50)
..t dog_surf = surf.surf(dog mh, nr_octaves=8, nr scales=16, initial step size=1,

threshold=0.1, max_points=54)

...t fig = plt.figure(figsize = (10,4))
: ax1 = fig.add _subplot(1,2, 1)
..t ax1l.imshow(surf.show_surf(cat mh, cat_surf))
...t ax2 = fig.add subplot(1,2, 2)
..t ax2.imshow(surf.show_surf(dog mh, dog surf))

50 100 150 200 30

Figure 4-31. Localized feature extraction with SURF

The square boxes in the image plots in Figure 4-31 depict the square image regions around the points of
interest which were used for localized feature extraction. You can also use the surf.dense(...) function to
extract uniform dimensional feature descriptors at dense points with regular interval spacing in pixels. The
following code depicts how to achieve this.

In [14]: cat_surf_fds = surf.dense(cat_mh, spacing=10)
...t dog surf fds = surf.dense(dog _mh, spacing=10)
...: cat_surf fds.shape

out[14]: (140, 64)

We see from the preceding output that we have obtained 140 feature descriptors of size 64 (elements)
each. You can further apply other schemes on this like aggregation, flattening, and so on to derive further
features. Another sophisticated technique that you can use to extract features on these SURF feature
descriptors is to use the visual bag of words model, which we discuss in the next section.

232

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

Visual Bag of Words Model

We have seen the effectiveness of the popular Bag of Words model in extracting meaningful features from
unstructured text documents. Bag of words refers to the document being broken down into its constituents,
words and computing frequency of occurrences or other measures like tf-idf. Similarly, in case of image raw
pixel matrices or derived feature descriptors from other algorithms, we can apply a bag of words principle.
However the constituents will not be words in this case but they will be subset of features/pixels extracted
from images which are similar to each other.

Imagine you have multiple pictures of octopuses and you were able to extract the 140 dense surf
features each having 64 values in each feature vector. You can now use an unsupervised learning algorithm
like clustering to extract clusters of similar feature descriptors. Each cluster can be labeled as a visual word
or a visual feature. Subsequently, each feature descriptor can be binned into one of these clusters or visual
words. Thus, you end up getting a one-dimensional visual bag of words vector with counts of number of
feature descriptors assigned to each of the visual words for the 140x64 feature descriptor matrix. Each
feature or visual word tends to capture some portion of the images that are similar to each other like octopus
eyes, tentacles, suckers, and so on, as depicted in Figure 4-32.

Bag of Visual Words

Figure 4-32. Visual bag of words (Courtesy of Ian London, Image Classification in Python with Visual Bag
of Words)

The basic idea is hence to get a feature descriptor matrix from using any algorithm like SURF, apply an
unsupervised algorithm like K-means clustering, and extract out k bins or visual features/words and their
counts (based on number of feature descriptors assigned to each bin). Then for each subsequent image, once
you extract the feature descriptors, you can use the K-means model to assign each feature descriptor to one
of the visual feature clusters and get a one-dimensional vector of counts. This is depicted in Figure 4-33 for
a sample octopus image, assuming our VBOW (Visual Bag of Words) model has three bins of eyes, tentacles,
and suckers.

233

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

1

e A U

Figure 4-33. Transforming an image into a VBOW vector (Courtesy of Ian London, Image Classification in
Pythonwith Visual Bag of Words)

Thus you can see from Figure 4-33, how a two-dimensional image and its corresponding feature
descriptors can be easily transformed into a one-dimensional VBOW vector [1, 3, 5]. Going into
extensive details of the VBOW model would not be possible in the current scope, but I would like to thank
my friend and fellow data scientist, [an London, for helping me out with providing the two figures on VBOW
models. I would also recommend you to check out his wonderful blog article https://ianlondon.github.
io/blog/visual-bag-of-words/, which talks about using the VBOW model for image classification.

We will now use our 140x64 SURF feature descriptors for our two sample images and use K-means
clustering on them and compute VBOW vectors for each image by assigning each feature descriptor to one
of the bins. We will take k=20 in this case. See Figure 4-34.

In [15]: from sklearn.cluster import KMeans

: k=20
: km = KMeans(k, n_init=100, max_iter=100)

...t surf fd features = np.array([cat_surf fds, dog surf fds])
...t km.fit(np.concatenate(surf fd features))

: vbow_features = []

: for feature desc in surf fd features:
labels = km.predict(feature desc)
vbow = np.bincount(labels, minlength=k)

vbow_features.append(vbow)

..: vbow_df = pd.DataFrame(vbow features)
: pd.concat([df, vbow df], axis=1)

out[15]:

Image|0| 1| 2| 3|4| 5| 6|7|8|...[10|{11|12|13|14|15|16|17|18| 19
0| Cat 8(16|11|7 (3|0 |16|6|0|...|0 |13|1 |0 |1 |15|10|2 |14 |2
1{Dog |3|10|6 |16|9|16|9 [5|3|...|2 |10|3 |2 [3 |7 |7 |6 |7 |2

Figure 4-34. Transforming SURF descriptors into VBOW vectors for sample images

234

https://ianlondon.github.io/blog/visual-bag-of-words/
https://ianlondon.github.io/blog/visual-bag-of-words/

CHAPTER 4 ' FEATURE ENGINEERING AND SELECTION

You can see how easy it is to transform complex two-dimensional SURF feature descriptor matrices into
easy to interpret VBOW vectors. Let’s now take a new image and think about how we could apply the VBOW
pipeline. First we would need to extract the SURF feature descriptors from the image using the following
snippet (This is only to depict the localized image subsets used in SURF we will actually use the dense
features as before.) See Figure 4-35.

In [16]: new cat = io.imread('datasets/new_cat.png')
..t newcat mh = mh.colors.rgb2gray(new cat)
: newcat_surf = surf.surf(newcat mh, nr_octaves=8, nr_scales=16, initial step size=1,
threshold=0.1, max_points=50)

...: fig = plt.figure(figsize = (10,4))

..t axl = fig.add_subplot(1,2, 1)
...t axi.imshow(surf.show surf(newcat mh, newcat surf))

Out[16]:

150 200 250 300

Figure 4-35. Localized feature extraction with SURF for new image

Let’s now extract the dense SURF features and transform them into a VBOW vector using our previously
trained VBOW model. The following code helps us achieve this. See Figure 4-36.

In [17]: new_surf fds = surf.dense(newcat mh, spacing=10)
...: labels = km.predict(new_surf fds)

..t new_vbow = np.bincount(labels, minlength=k)
..t pd.DataFrame([new vbow])

Out[17]:

01| 2|3|(4|5| 6|7|8| 9/10|11|12|13|14|15|16|17|18|19
0(9|5(11/0(9|4|19(9|0|16(0 |7 |3 |0 |0 |7 (20(3 (162

Figure 4-36. Transforming new image SURF descriptors into a VBOW vector

Thus you can see the final VBOW feature vector for the new image based on SURF feature descriptors. This
is also an example of using an unsupervised Machine Learning model for feature engineering. You can now
compare the similarity of this new image with the other two sample images using some similarity metrics.

235

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

In [18]: from sklearn.metrics.pairwise import euclidean distances, cosine similarity

: eucdis = euclidean distances(new vbow.reshape(1,-1) , vbow features)
...t cossim = cosine similarity(new vbow.reshape(1,-1) , vbow_features)

: result df = pd.DataFrame({'EuclideanDistance': eucdis[0],
"CosineSimilarity': cossim[0]})
: pd.concat([df, result df], axis=1)

out[18]:

Image CosineSimilarity EuclideanDistance
0 Cat 0.871609 21.260292
1 Dog 0.722096 30.000000

Based on the distance and similarity metrics, we can see that our new image (of a cat) is definitely closer
to the cat image than the dog image. Try this out with a bigger dataset to get better results!

Automated Feature Engineering with Deep Learning

We have used a lot of simple and sophisticated feature engineering techniques so far in this section. Building
complex feature engineering systems and pipelines is time consuming and building algorithms for the same
is even more tasking. Deep Learning is a novel and new approach toward automating this complex task of
feature engineering by making the machine extract features automatically by learning multiple layered and
complex representations of the underlying raw data.

Convolutional neural networks or CNNs are extensively used for automated feature extraction in
images. We have already covered the basic principles of CNNs in Chapter 1. Go ahead and refresh your
memory you heading to the “Important Concepts” sub-section under the “Deep Learning” section in
Chapter 1. Just like we mentioned before, the idea of CNNs operate on the principles of convolution and
pooling besides your regular activation function layers.

Convolutional layers typically slides or convolves learnable filters (also known as kernels or convolution
matrix) across the entire width and height of the input image pixels. Dot products between the input pixels
and the filter are computed at each position on sliding the filter. Two-dimensional activation maps for the
filter get created and consequently the network is able to learn these filters when it activates on detecting
specific features like edges, corners and so on. If we take n filters, we will get n separate two-dimensional
activation maps, which can then be stacked along the depth dimension to get the output volume.

Pooling is a kind of aggregation or downsampling layer where typically a non-linear downsampling
operation is inserted between convolutional layers. Filters are applied here too. They are slided along the
convolution output matrix and, for each sliding operation, also known as a stride, elements in the slice of
matrix covered by the pooling filter are either summed (Sum pooling) or averaged (Mean pooling) or the
maximum value is selected (Max pooling). More than often max pooling works really well in several real-
world scenarios. Pooling helps in reducing feature dimensionality and control model overfitting. Let’s now
try to use Deep Learning for automated feature extraction on our sample images using CNNs. Load the
following dependencies necessary for building deep networks.

In [19]: from keras.models import Sequential
: from keras.layers.convolutional import Conv2D
...: from keras.layers.convolutional import MaxPooling2D
...: from keras import backend as K
Using TensorFlow backend.

236

http://dx.doi.org/10.1007/978-1-4842-3207-1_1
http://dx.doi.org/10.1007/978-1-4842-3207-1_1

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

You can use Theano or Tensorflow as your backend Deep Learning framework for keras to work on.
I am using tensorflow in this scenario. Let’s build a basic two-layer CNN now with a Max Pooling layer
between them.

In [20]: model = Sequential()
...: model.add(Conv2D(4, (4, 4), input_shape=(168, 300, 3), activation='relu',
L.t kernel initializer="glorot uniform"))
.: model.add(MaxPooling2D(pool size=(2, 2)))
...: model.add(Conv2D(4, (4, 4), activation='relu',
kernel_initializer='glorot_uniform'))

We can actually visualize this network architecture using the following code snippet to understand the
layers that have been used in this network, in a better way.

In [21]: from IPython.display import SVG
...: from keras.utils.vis_utils import model to_dot

: SVG(model to dot(model, show shapes=True,
show layer names=True, rankdir='TB').create(prog='dot', format="'svg'))

Out[21]:

input: | (None, 168, 300, 3)

conv2d_1_input: InputLayer
output: | (None, 168, 300, 3)

A 4
input: | (None, 168, 300, 3)

output: | (None, 165, 297, 4)

conv2d 1: Conv2D

Y

input: | (None, 165, 297, 4) :

max_pooling2d 1: MaxPooling2D
output: | (None, 82, 148, 4)

l

input: | (None, 82, 148, 4)
output: | (None, 79, 145, 4)

conv2d 2: Conv2D

Figure 4-37. Visualizing our two-layer convolutional neural network architecture

You can now understand from the depiction in Figure 4-37 that we are using two two-dimensional
Convolutional layers containing four (4x4) filters. We also have a Max Pool layer between them of size (2x2)
for some downsampling. Let’s now build some functions to extract features from these intermediate network
layers.

237

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

In [22]: first_conv_layer = K.function([model.layers[o0].input, K.learning phase()],
. [model.layers[o0].output])

: second_conv_layer = K.function([model.layers[0].input, K.learning phase()],
[model.layers[2].output])

Let’s now use these functions to extract the feature representations learned in the convolutional layers
and visualize these features to see what the network is trying to learn from the images.

In [23]: catr = cat.reshape(1, 168, 300,3)

...t # extract features
: first conv_features = first conv_layer([catr])[0][0]
: second_conv_features = second conv_layer([catr])[0][0]

...t # view feature representations

...: fig = plt.figure(figsize = (14,4))

...t ax1l = fig.add _subplot(2,4, 1)

..t axl.imshow(first conv_features[:,:,0])
: ax2 = fig.add _subplot(2,4, 2)

..t ax2.imshow(first conv_features[:,:,1])

...t ax3 = fig.add subplot(2,4, 3)

...t ax3.imshow(first conv_features[:,:,2])
: ax4 = fig.add subplot(2,4, 4)
: ax4.imshow(first conv_features[:,:,3])

: ax5 = fig.add subplot(2,4, 5)

...t ax5.imshow(second conv_features[:,:,0])

...t ax6 = fig.add subplot(2,4, 6)

..: ax6.imshow(second conv_features[:,:,1])
: ax7 = fig.add subplot(2,4, 7)

..t ax7.imshow(second conv_features[:,:,2])
: ax8 = fig.add subplot(2,4, 8)

..t ax8.imshow(second conv_features[:,:,3])

out[23]:

0
50
100
150

Figure 4-38. Intermediate feature maps obtained after passing though convolutional Layers

SSB':.
8889

238

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

The feature map visualizations depicted in Figure 4-38 are definitely interesting. You can clearly see
that each feature matrix produced by the convolutional neural network is trying to learn something about
the image like its texture, corners, edges, illumination, hue, brightness, and so on. This should give you an
idea of how these activation feature maps can then be used as features for images. In fact you can stack the
output of a CNN, flatten it if needed, and pass it as an input layer to a multi-layer fully connected perceptron
neural network and use it to solve the problem of image classification. This should give you a head start on
automated feature extraction with the power of Deep Learning!

Don’t worry if you did not understand some of the terms mentioned in this section; we will cover Deep
Learning and CNNs in more depth in a subsequent chapter. If can’t wait to get started with Deep Learning,
you can fire up the bonus notebook provided with this chapter, called Bonus - Classifying handwritten
digits using Deep CNNs.ipynb, for a complete real-world example of applying CNNs and Deep Learning
to classify hand-written digits!

Feature Scaling

When dealing with numeric features, we have specific attributes which may be completely unbounded in nature,
like view counts of a video or web page hits. Using the raw values as input features might make models biased
toward features having really high magnitude values. These models are typically sensitive to the magnitude or
scale of features like linear or logistic regression. Other models like tree based methods can still work without
feature scaling. However it is still recommended to normalize and scale down the features with feature scaling,
especially if you want to try out multiple Machine Learning algorithms on input features. We have already seen
some examples of scaling and transforming features using log and box-cox transforms earlier in this chapter.

In this section, we look at some popular feature scaling techniques. You can load feature_scaling.py directly
and start running the examples or use the jupyter notebook, Feature Scaling.ipynb for a more interactive
experience. Let’s start by loading the following dependencies and configurations.

In [1]: from sklearn.preprocessing import StandardScaler, MinMaxScaler, RobustScaler
: import numpy as np
.t import pandas as pd
.1 np.set_printoptions(suppress=True)

Let’s now load some sample data of user views pertaining to online videos. The following snippet
creates this sample dataset.

In [2]: views = pd.DataFrame([1295., 25., 19000., 5., 1., 300.], columns=['views'])
...: views
Out[2]:
views
1295.0
25.0
19000.0
5.0
1.0
300.0

Uik WwN R O

From the preceding dataframe we can see that we have five videos that have been viewed by users and
the total view count for each video is depicted by the feature views. It is quite evident that some videos have
been viewed a lot more than the others, giving a rise to values of high scale and magnitude. Let’s look at how
we can scale this feature using several handy techniques.

239

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

Standardized Scaling

The standard scaler tries to standardize each value in a feature column by removing the mean and scaling
the variance to be 1 from the values. This is also known as centering and scaling and can be denoted
mathematically as

SS(XI): Xi;ﬂx
X

where each value in feature X is subtracted by the mean x, and the resultant is divided by the standard
deviation 6,. This is also popularly known as Z-score scaling. You can also divide the resultant by the
variance instead of the standard deviation if needed. The following snippet helps us achieve this.

In [3]: ss = StandardScaler()
: views['zscore'] = ss.fit transform(views[['views']])
: views
Out[3]:
views zscore

0 1295.0 -0.307214
1 25.0 -0.489306
2 19000.0 2.231317
3 5.0 -0.492173
4 1.0 -0.492747
5

300.0 -0.449877

We can see the standardized and scaled values in the zscore column in the preceding dataframe. In
fact, you can manually use the formula we used earlier to compute the same result. The following example
computes the z-score mathematically.

In [4]: vw = np.array(views['views'])
...t (vw[0] - np.mean(vw)) / np.std(vw)
Out[4]: -0.30721413311687235

Min-Max Scaling

With min-max scaling, we can transform and scale our feature values such that each value is within the
range of [0, 1]. However the MinMaxScaler class in scikit-learn also allows you to specify your own upper
and lower bound in the scaled value range using the feature_range variable. Mathematically we can
represent this scaler as

X, —min(X)

MM (X,)= e () —min(X)

where we scale each value in the feature X by subtracting it from the minimum value in the feature min
(X) and dividing the resultant by the difference between the maximum and minimum values in the feature
max(X) - min (X). The following snippet helps us compute this.

In [5]: mms = MinMaxScaler()
..t views['minmax'] = mms.fit transform(views[['views']])

240

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

: views
Out[5]:
views zscore minmax

0 1295.0 -0.307214 0.068109
1 25.0 -0.489306 0.001263
2 19000.0 2.231317 1.000000
3 5.0 -0.492173 0.000211
4 1.0 -0.492747 0.000000
5 300.0 -0.449877 0.015738

The preceding output shows the min-max scaled values in the minmax column and as expected, the
maximum viewed video in row index 2 has a value of 1, and the minimum viewed video in row index 4 has a
value of 0. You can also compute this mathematically using the following code (sample computation for the
first row).

In [6]: (vw[O] - np.min(vw)) / (np.max(vw) - np.min(vw))
Out[6]: 0.068108847834096528

Robust Scaling

The disadvantage of min-max scaling is that often the presence of outliers affects the scaled values for any
feature. Robust scaling tries to use specific statistical measures to scale features without being affected by
outliers. Mathematically this scaler can be represented as

X, —median(X)

RS(Xi)) IQR(1,3) (X)

where we scale each value of feature X by subtracting the median of X and dividing the resultant by the IQR
also known as the Inter-Quartile Range of X which is the range (difference) between the first quartile (25th
%ile) and the third quartile (75th %ile). The following code performs robust scaling on our sample feature.

In [7]: rs = RobustScaler()
: views['robust'] = rs.fit transform(views[['views']])

... views

Out[7]:

views zscore minmax robust
0 1295.0 -0.307214 0.068109 1.092883
1 25.0 -0.489306 0.001263 -0.132690
2 19000.0 2.231317 1.000000 18.178528
3 5.0 -0.492173 0.000211 -0.151990
4 1.0 -0.492747 0.000000 -0.155850
5 300.0 -0.449877 0.015738 0.132690

The scaled values are depicted in the robust column and you can compare them with the scaled
features in the other columns. You can also compute the same using the mathematical equation we
formulated for the robust scaler as depicted in the following snippet (for the first row index value).

In [8]: quartiles = np.percentile(ww, (25., 75.))

241

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

: iqr = quartiles[1] - quartiles[0]
...t (vw[0] - np.median(ww)) / iqr
Out[8]: 1.0928829915560916

There are several other techniques for feature scaling and normalization, but these should be sufficient
to get you started and are used extensively in building Machine Learning systems. Always remember to
check if you need to scale and standardize features whenever you are dealing with numerical features.

Feature Selection

While it is good to try to engineering features that try to capture some latent representations and patterns
in the underlying data, it is not always a good thing to deal with feature sets having maybe thousands
of features or even more. Dealing with a large number of features bring us to the concept of the curse of
dimensionality which we mentioned earlier during the “Bin Counting” section in “Feature Engineering on
Categorical Data” More features tend to make models more complex and difficult to interpret. Besides this,
it can often lead to models over-fitting on the training data. This basically leads to a very specialized model
tuned only to the data which it used for training and hence even if you get a high model performance, it
will end up performing very poorly on new, previously unseen data. The ultimate objective is to select an
optimal number of features to train and build models that generalize very well on the data and prevent
overfitting.

Feature selection strategies can be divided into three main areas based on the type of strategy and
techniques employed for the same. They are described briefly as follows.

e Filter methods: These techniques select features purely based on metrics like
correlation, mutual information and so on. These methods do not depend on results
obtained from any model and usually check the relationship of each feature with
the response variable to be predicted. Popular methods include threshold based
methods and statistical tests.

e Wrapper methods: These techniques try to capture interaction between multiple
features by using a recursive approach to build multiple models using feature
subsets and select the best subset of features giving us the best performing model.
Methods like backward selecting and forward elimination are popular wrapper
based methods.

e Embedded methods: These techniques try to combine the benefits of the other
two methods by leveraging Machine Learning models themselves to rank and score
feature variables based on their importance. Tree based methods like decision trees
and ensemble methods like random forests are popular examples of embedded
methods.

The benefits of feature selection include better performing models, less overfitting, more generalized
models, less time for computations and model training, and to get a good insight into understanding
the importance of various features in your data. In this section, we look at some of the most widely used
techniques in feature selection. You can load feature_selection.py directly and start running the
examples or use the jupyter notebook, Feature Selection.ipynb for a more interactive experience. Let’s
start by loading the following dependencies and configurations.

In [1]: import numpy as np
: import pandas as pd
.1 np.set_printoptions(suppress=True)
: pt = np.get_printoptions()['threshold"]

242

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

We will now look at various ways of selecting features including statistical and model based techniques
by using some sample datasets.

Threshold-Based Methods

This is a filter based feature selection strategy, where you can use some form of cut-off or thresholding for
limiting the total number of features during feature selection. Thresholds can be of various forms. Some of
them can be used during the feature engineering process itself, where you can specify threshold parameters.
A simple example of this would be to limit feature terms in the Bag of Words model, which we used for text
based feature engineering earlier. The scikit-learn framework provides parameters like min_df and max_
df which can be used to specify thresholds for ignoring terms which have document frequency above and
below user specified thresholds. The following snippet depicts a way to do this.

In [2]: from sklearn.feature extraction.text import CountVectorizer

: cv = CountVectorizer(min_ df=0.1, max_df=0.85, max_features=2000)
A e
Out[2]:
CountVectorizer(analyzer="word', binary=False, decode error='strict',
dtype=<class 'numpy.int64'>, encoding='utf-8', input='content',
lowercase=True, max_df=0.85, max_features=2000, min_df=0.1,
ngram_range=(1, 1), preprocessor=None, stop words=None,
strip accents=None, token_pattern="(?u)\\b\\w\\w+\\b",
tokenizer=None, vocabulary=None)

This basically builds a count vectorizer which ignores feature terms which occur in less than 10% of the
total corpus and also ignores terms which occur in more than 85% of the total corpus. Besides this we also
put a hard limit of 2000 maximum features in the feature set.

Another way of using thresholds is to use variance based thresholding where features having low
variance (below a user-specified threshold) are removed. This signifies that we want to remove features that
have values that are more or less constant across all the observations in our datasets. We can apply this to
our Pokémon dataset, which we used earlier in this chapter. First we convert the Generation feature to a
categorical feature as follows.

In [3]: df = pd.read csv('datasets/Pokemon.csv')
...t poke gen = pd.get dummies(df['Generation'])
...t poke gen.head()

Out[3]:

Gen 1 Gen 2 Gen 3 Gen 4 Gen 5 Gen 6
0 0 0 0 0 0
1 1 0 0 0 0 0
2 1 0 0 0 0 0
3 1 0 0 0 0 0
4 1 0 0 0 0] 0

Next, we want to remove features from the one hot encoded features where the variance is less than
0.15. We can do this using the following snippet.

243

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

In [4]: from sklearn.feature selection import VarianceThreshold

..: vt = VarianceThreshold(threshold=.15)
...t vt.fit(poke_gen)
Out[4]: VarianceThreshold(threshold=0.15)

To view the variances as well as which features were finally selected by this algorithm, we can use the
variances_property and the get_support(...) function respectively. The following snippet depicts this
clearly in a formatted dataframe.

In [5]: pd.DataFrame({'variance': vt.variances_,
A "'select feature': vt.get support()},

et index=poke_gen.columns).T
Out[5]:
Gen 1 Gen 2 Gen 3 Gen 4 Gen 5 Gen 6
select_feature True False True False True False
variance 0.164444 0.114944 0.16 0.128373 0.163711 0.0919937

We can clearly see which features have been selected based on their True values and also their variance
being above 0.15. To get the final subset of selected features, you can use the following code.

In [6]: poke gen subset = poke gen.iloc[:,vt.get support()].head()
...: poke gen subset

Out[6]:

Gen 1 Gen 3 Gen 5
0 1 0 0
1 1 0 0
2 1 0 0
3 1 0 0
4 1 0 0

The preceding feature subset depicts that features Gen 1, Gen 3, and Gen 5 have been finally selected
out of the original six features.

Statistical Methods

Another widely used filter based feature selection method, which is slightly more sophisticated, is to

select features based on univariate statistical tests. You can use several statistical tests for regression and
classification based models including mutual information, ANOVA (analysis of variance) and chi-square
tests. Based on scores obtained from these statistical tests, you can select the best features on the basis

of their score. Let’s load a sample dataset now with 30 features. This dataset is known as the Wisconsin
Diagnostic Breast Cancer dataset, which is also available in its native or raw format at https://archive.
ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic), which is the UCI Machine Learning
repository. We will use scikit-1learn to load the data features and the response class variable.

In [7]: from sklearn.datasets import load breast cancer
..t bc_data = load breast cancer()

.1 bc_features = pd.DataFrame(bc_data.data, columns=bc_data.feature names)
: bc_classes = pd.DataFrame(bc_data.target, columns=['IsMalignant'])

244

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

: # build featureset and response class labels
.1 bc X = np.array(bc_features)
: bc_y = np.array(bc_classes).T[0]
..t print('Feature set shape:', bc_X.shape)
...t print('Response class shape:', bc_y.shape)
Feature set shape: (569, 30)
Response class shape: (569,)

We can clearly see that, as we mentioned before, there are a total of 30 features in this dataset and a
total of 569 rows of observations. To get some more detail into the feature names and take a peek at the data
points, you can use the following code.

In [8]: np.set printoptions(threshold=30)
...t print('Feature set data [shape: '+str(bc_X.shape)+']")
...t print(np.round(bc_X, 2), '\n")
..t print('Feature names:")
..t print(np.array(bc_features.columns), '\n")
..t print('Response Class label data [shape: '+str(bc_y.shape)+']")
: print(bc_y, "\n")
.1 print('Response variable name:', np.array(bc_classes.columns))
...t np.set_printoptions(threshold=pt)
Feature set data [shape: (569, 30)]
[[17.99 10.38 122.8 ..., 0.27 0.46 0.12]

[20.57 17.77 132.9 ..., 0.19 0.28 0.09]
[19.69 21.25 130. ..., 0.24 0.36 0.09]
ceny

[16.6 28.08 108.3 ..., 0.14 0.22 0.08]
[20.6 29.33 140.1 ..., 0.26 0.41 0.12]
[7.76 24.54 47.92 ..., 0. 0.29 0.07]]

Feature names:

['mean radius' 'mean texture' 'mean perimeter' 'mean area’
'mean smoothness' 'mean compactness' 'mean concavity'
'mean concave points' ‘mean symmetry' 'mean fractal dimension'
'radius error' 'texture error' 'perimeter error' 'area error'
"smoothness error' 'compactness error' 'concavity error’
'concave points error' 'symmetry error' 'fractal dimension error'
'worst radius' 'worst texture' 'worst perimeter' 'worst area’
'worst smoothness' 'worst compactness' 'worst concavity'
'worst concave points' 'worst symmetry' 'worst fractal dimension']

Response Class label data [shape: (569,)]
[00O0 ..., 001]

Response variable name: ['IsMalignant']

This gives us a better perspective on the data we are dealing with. The response class variable is a binary
class where 1 indicates the tumor detected was benign and 0 indicates it was malignant. We can also see
the 30 features that are real valued numbers that describe characteristics of cell nuclei present in digitized
images of breast mass. Let’'s now use the chi-square test on this feature set and select the top 15 best features
out of the 30 features. The following snippet helps us achieve this.

245

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

In [9]: from sklearn.feature selection import chi2, SelectKBest

..: skb = SelectKBest(score func=chi2, k=15)
...t skb.fit(bc X, bc_y)
Out[9]: SelectkBest(k=15, score func=<function chi2 at 0x0000018C2BEB7840>)

You can see that we have passed our input features (bc_X) and corresponding response class outputs
(bc_y) to the fit(...) function when computing the necessary metrics. The chi-square test will compute
statistics between each feature and the class variable (univariate tests). Selecting the top K features is more
than likely to remove features having a low score and consequently they are most likely to be independent
of the class variable and hence not useful in building models. We sort the scores to see the most relevant
features using the following code.

In [10]: feature scores = [(item, score) for item, score in zip(bc_data.feature_names,
skb.scores)]
...t sorted(feature scores, key=lambda x: -x[1])[:10]
Out[10]:
[('worst area', 112598.43156405364),
("mean area', 53991.655923750892),
('area error', 8758.5047053344697),
('worst perimeter', 3665.0354163405909),
('mean perimeter', 2011.1028637679051),
('worst radius', 491.68915743332195),
('mean radius', 266.10491719517802),
('perimeter error', 250.57189635982184),
('worst texture', 174.44939960571074),
('mean texture', 93.897508098633352)]

We can now create a subset of the 15 selected features obtained from our original feature set of 30
features with the help of the chi-square test by using the following code.

In [11]: select features kbest = skb.get support()
...: feature names_kbest = bc_data.feature names[select features kbest]
..: feature subset df = bc_features[feature names kbest]
.t bc_SX = np.array(feature subset df)
: print(bc_SX.shape)
...t print(feature names kbest)
(569, 15)
['mean radius' 'mean texture' 'mean perimeter' 'mean area' 'mean concavity'
'radius error' 'perimeter error' 'area error' 'worst radius'
'worst texture' 'worst perimeter' 'worst area' 'worst compactness'
'worst concavity' 'worst concave points']

Thus from the preceding output, you can see that our new feature subset bc_SX has 569 observations
of 15 features instead of 30 and we also printed the names of the selected features for your ease of

understanding. To view the new feature set, you can use the following snippet.

In [12]: np.round(feature subset df.iloc[20:25], 2)

246

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

mean| mean mean | mean mean | radius | perimeter| area| worst| worst worst| worst worst worst cor‘::"ar::
radlus p area y| error arror| error|radlus | texture perimeter| area|compactness | concavity points
13.08 |15.71 |85.63 520.0 | 0.05 019 (138 14.67 |14.50 20,49 |96.00 630.5 (0.28 019 0.07
8.50 |1244 |60.34 2739 |0.03 028 1.9 15.70 |10.23 [1566 |65.13 349 (011 0.08 0.06
1534 |14.26 |102.50 7044 |0.21 044 (338 4491 (1807 |19.08 |125.10 9800 |0.60 063 0.24
21.16 |23.04 |137.20 1404.0| 0.11 060 (4.30 93.00 (2017 |36.50 |[188.00 2615.0|0.26 0.32 0.20
16.65 |21.38 (110,00 904.6 |0.15 0.81 546 10260|26.46 |31.56 |177.00 2215.0|0.36 0.47 0.21

Figure 4-39. Selected feature subset of the Wisconsin Diagnostic Breast Cancer dataset using chi-square tests

The dataframe with the top scoring features is depicted in Figure 4-39. Let’s now build a simple
classification model using logistic regression on the original feature set of 30 features and compare the
model accuracy performance with another model built using our selected 15 features. For model evaluation,
we will use the accuracy metric (percent of correct predictions) and use a five-fold cross-validation scheme.
We will be covering model evaluation and tuning strategies in detail in Chapter 5, so do not despair if
you cannot understand some of the terminology right now. The main idea here is to compare the model
prediction performance between models trained on different feature sets.

In [13]: from sklearn.linear model import LogisticRegression
..: from sklearn.model selection import cross val score

: # build logistic regression model
: 1r = LogisticRegression()

..t # evaluating accuracy for model built on full featureset
...: full feat acc = np.average(cross val score(lr, bc X, bc_y, scoring='accuracy', cv=5))
...: # evaluating accuracy for model built on selected featureset

: sel feat acc = np.average(cross val score(lr, bc_SX, bc_y, scoring='accuracy', cv=5))

.t print('Model accuracy statistics with 5-fold cross validation')
..t print('Model accuracy with complete feature set', bc X.shape, ':', full feat acc)
: print('Model accuracy with selected feature set', bc_SX.shape, ':', sel feat acc)
Model accuracy statistics with 5-fold cross validation
Model accuracy with complete feature set (569, 30) : 0.950904193921
Model accuracy with selected feature set (569, 15) : 0.952643324356

The accuracy metrics clearly show us that we actually built a better model having accuracy of 95.26%
when trained on the selected 15 feature subset as compared to the model built with the original 30 features
which had an accuracy of 95.09%. Try this out on your own datasets! Do you see any improvements?

Recursive Feature Elimination

You can also rank and score features with the help of a Machine Learning based model estimator such that
you recursively keep eliminating lower scored features till you arrive at the specific feature subset count.
Recursive Feature Elimination, also known as RFE, is a popular wrapper based feature selection technique,
which allows you to use this strategy. The basic idea is to start off with a specific Machine Learning estimator
like the Logistic Regression algorithm we used for our classification needs. Next we take the entire feature set
of 30 features and the corresponding response class variables. RFE aims to assign weights to these features
based on the model fit. Features with the smallest weights are pruned out and then a model is fit again on

247

http://dx.doi.org/10.1007/978-1-4842-3207-1_5

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

the remaining features to obtain the new weights or scores. This process is recursively carried out multiple
times and each time features with the lowest scores/weights are eliminated, until the pruned feature subset
contains the desired number of features that the user wanted to select (this is taken as an input parameter at
the start). This strategy is also popularly known as backward elimination. Let’s select the top 15 features on
our breast cancer dataset now using RFE.

In [14]: from sklearn.feature_selection import RFE

: 1r = LogisticRegression()
.: rfe = RFE(estimator=1r, n_features to_select=15, step=1)
...t rfe.fit(bc_X, bc_y)
Out[14]:
RFE(estimator=LogisticRegression(C=1.0, class weight=None, dual=False, fit intercept=True,
intercept scaling=1, max_iter=100, multi_class="ovr', n_jobs=1,
penalty="12", random_state=None, solver='liblinear', tol=0.0001,
verbose=0, warm_start=False),
n_features to select=15, step=1, verbose=0)

We can now use the get_support(...) function to obtain the final 15 selected features. This is depicted
in the following snippet.

In [15]: select features rfe = rfe.get support()
...: feature_names_rfe = bc_data.feature_names[select features rfe]
...t print(feature names rfe)
['mean radius' 'mean texture' 'mean perimeter' 'mean smoothness'
'mean concavity' 'mean concave points' 'mean symmetry' 'texture error'
'worst radius' 'worst texture' 'worst smoothness' 'worst concavity'
'worst concave points' 'worst symmetry' ‘worst fractal dimension']

Can we compare this feature subset with the one we obtained using statistical tests in the previous
section and see which features are common among both these subsets? Of course we can! Let’s use set
operations to get the list of features that were selected by both these techniques.

In [16]: set(feature names kbest) & set(feature names rfe)
Out[16]:
{'mean concavity', 'mean perimeter', 'mean radius', 'mean texture',
'worst concave points', 'worst concavity', 'worst radius', 'worst texture'}

Thus we can see that 8 out of 15 features are common and have been chosen by both the feature
selection techniques, which is definitely interesting!

Model-Based Selection

Tree based models like decision trees and ensemble models like random forests (ensemble of trees) can

be utilized not just for modeling alone but for feature selection. These models can be used to compute
feature importances when building the model that can in turn be used for selecting the best features and
discarding irrelevant features with lower scores. Random forest is an ensemble model. This can be used as
an embedded feature selection method, where each decision tree model in the ensemble is built by taking
a training sample of data from the entire dataset. This sample is a bootstrap sample (sample taken with
replacement). Splits at any node are taken by choosing the best split from a random subset of the features
rather than taking all the features into account. This randomness tends to reduce the variance of the model

248

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

at the cost of slightly increasing the bias. Overall this produces a better and more generalized model. We will
cover the bias-variance tradeoff in more detail in Chapter 5. Let’s now use the random forest model to score
and rank features based on their importance.

In [17]: from sklearn.ensemble import RandomForestClassifier

...: rfc = RandomForestClassifier()
<.t rfc.fit(bc X, bc_y)

Out[17]:

RandomForestClassifier(bootstrap=True, class weight=None, criterion="gini’',
max_depth=None, max_features="auto', max_leaf nodes=None,
min_impurity_split=1e-07, min_samples_leaf=1,
min_samples_split=2, min_weight fraction_leaf=0.0,
n_estimators=10, n_jobs=1, oob_score=False, random_state=None,
verbose=0, warm start=False)

The following code uses this random forest estimator to score the features based on their importance
and we display the top 10 most important features based on this score.

In [18]: importance scores = rfc.feature importances_
...: feature importances = [(feature, score) for feature, score in zip(bc_data.feature_
names, importance scores)]
...t sorted(feature importances, key=lambda x: -x[1])[:10]
Out[18]:
[('worst area', 0.25116985146898885),
('worst radius', 0.16995187376059454),
('worst concavity', 0.1164662504282163),
('worst concave points', 0.11253251729478526),
('mean concave points', 0.10839170432994949),
('mean concavity', 0.063554137255925847),
('mean area', 0.023771318604377804),
('worst perimeter', 0.020636790800076958),
('worst texture', 0.019171556030722112),
('mean radius', 0.014908508522792335)]

You can now use a threshold based parameter to filter out the top 7 features as needed or you can even
make use of the SelectFromModel meta-transformer provided by scikit-learn by using it as a wrapper on
top of this model. Can you find out how many of the higher ranked features from the random forest model
are in common with the previous two feature selectors?

Dimensionality Reduction

Dealing with a lot of features can lead to issues like model overfitting, complex models, and many more that
all roll up to what we have mentioned as the curse of dimensionality. Refer to the section “Dimensionality
Reduction” in Chapter 1 to refresh your memory. Dimensionality reduction is the process of reducing

the total number of features in our feature set using strategies like feature selection or feature extraction.
We have already talked about feature selection extensively in the previous section. We now cover feature
extraction where the basic objective is to extract new features from the existing set of features such that

the higher-dimensional dataset with many features can be reduced into a lower-dimensional dataset of
these newly created features. A very popular technique of linear data transformation from higher to lower
dimensions is Principal Component Analysis, also known as PCA. Let’s try to understand more about PCA
and how we can use it for feature extraction in the following sections.

249

http://dx.doi.org/10.1007/978-1-4842-3207-1_5
http://dx.doi.org/10.1007/978-1-4842-3207-1_1

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

Feature Extraction with Principal Component Analysis

Principal component analysis, popularly known as PCA, is a statistical method that uses the process of
linear, orthogonal transformation to transform a higher-dimensional set of features that could be possibly
correlated into a lower-dimensional set of linearly uncorrelated features. These transformed and newly
created features are also known as Principal Components or PCs. In any PCA transformation, the total
number of PCs is always less than or equal to the initial number of features. The first principal component
tries to capture the maximum variance of the original set of features. Each of the succeeding components
tries to capture more of the variance such that they are orthogonal to the preceding components. An
important point to remember is that PCA is sensitive to feature scaling.

Our main task is to take a set of initial features with dimension let’s say D and reduce it to a subset of
extracted principal components of a lower dimension LD. The matrix decomposition process of Singular
Value Decomposition is extremely useful in helping us obtain the principal components. You can quickly
refresh your memory on SVD by referring to the sub-section of “Singular Value Decomposition” under the
“Important Concepts” in the “Mathematics” section in Chapter 1 to check out the necessary mathematical
formula and concepts. Considering we have a data matrix F, ,, where we have n observations and
D dimensions (features), we can depict SVD of the feature matrix as (F(nX D)) = USV" such that all the principal
components are contained in the component V?, which can be depicted as follows:

p Cl(lxD)
rC,

VT _ (1xD)
(DxD)
PC,

(1xD)
The principal components are represented by {PC,, PC,, ... PC,}, which are all one-dimensional vectors

of dimensions (1 x D). For extracting the first d principal components, we can first transpose this matrix to
obtain the following representation.

PC,

(Dx1) (Dx1)

PC,=(V") = [Pc1

. .|PCD(Dx1)}

Now we can extract out the first d principal components such that d < D and the reduced principal
component set can be depicted as follows.

PC,

(Dx1) (Dx1)

PC,=(V") = [Pc1

. .|PCD(Dx1)}

Finally, to perform dimensionality reduction, we can get the reduced feature set using the following
mathematical transformation F, _ =F_ -PC, , where the dotproductbetween the original feature
matrix and the reduced subset of principal components gives us a reduced feature set of d features. A very
important point to remember here is that you might need to center your initial feature matrix by removing

the mean because by default, PCA assumes that your data is centered around the origin.

250

http://dx.doi.org/10.1007/978-1-4842-3207-1_1

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

Let’s try to extract the first three principal components now from our breast cancer feature set of
30 features using SVD. We first center our feature matrix and then use SVD and subsetting to extract the first
three PCs using the following code.

In [19]: # center the feature set
<.t bc_XC = bc_X - bc_X.mean(axis=0)

...: # decompose using SVD
: U, S, VT = np.linalg.svd(bc_XC)

..t # get principal components
... PC = VT.T

..: # get first 3 principal components
..: PC3 = PC[:, 0:3]
...t PC3.shape
out[19]: (30, 3)

We can now get the reduced feature set of three features by using the dot product operation we
discussed earlier. The following snippet gives us the final reduced feature set that can be used for modeling.

reduce feature set dimensionality

np.round(bc_XC.dot(PC3), 2)

Out[20]:

array([[-1160.14, -293.92, -48.58],
[-1269.12, 15.63, 35.39],
[-995.79, 39.16, 1.71],

cees
[-314.5 , 47.55, 10.44],
[-1124.86, 34.13, 19.74],
[771.53, -83.64, -23.89]])

Thus you can see how powerful SVD and PCA can be in helping us reduce dimensionality by extracting
necessary features. Of course in Machine Learning systems and pipelines you can use utilities from scikit-
learn instead of writing unnecessary code and equations. The following code enables us to perform PCA on
our breast cancer feature set leveraging scikit-learn's APIs.

In [21]: from sklearn.decomposition import PCA
...t pca = PCA(n_components=3)
...t pca.fit(bc X)
Out[21]:
PCA(copy=True, iterated power='auto', n_components=3, random state=None,
svd_solver="auto', tol=0.0, whiten=False)

To understand how much of the variance is explained by each of these principal components, you can
use the following code.

In [22]: pca.explained variance ratio
Out[22]: array([0.98204467, 0.01617649, 0.00155751])

251

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

From the preceding output, as expected, we can see the maximum variance is explained by the first
principal component. To obtain the reduced feature set, we can use the following snippet.

In [23]: bc_pca = pca.transform(bc_X)
...t np.round(bc_pca, 2)
Out[23]:
array([[1160.14, -293.92, 48.58],
[1269.12, 15.63, -35.39],
[995.79, 39.16, -1.71],

.
[314.5, 47.55, -10.44],
[1124.86, 34.13, -19.74],
[-771.53, -88.64, 23.89]1])

If you compare the values of this reduced feature set with the values obtained in our mathematical
implementation based code, you will see they are exactly the same except sign inversions in some cases.

The reason for sign inversion in some of the values in principal components is because the direction of these
principal components is unstable. The sign indicates direction. Hence even if the principal components point in
opposite directions, they should still be on the same plane and hence shouldn't have an effect when modeling
with this data.

Let’s now quickly build a logistic regression model as before and use model accuracy and five-fold cross
validation to evaluate the model quality using these three features.

In [24]: np.average(cross val score(lr, bc_pca, bc y, scoring="accuracy', cv=5))
Out[24]: 0.92808003078106949

We can see from the preceding output that even though we used only three features derived from the
principal components instead of the original 30 features, we still obtained a model accuracy close to 93%,
which is quite decent!

Summary

This was a content packed chapter with a lot of hands-on examples based on real-world datasets. The main
intent of this chapter is to get you familiarized with essential concepts, tools, techniques, and strategies used
for feature extraction, engineering, scaling, and selection. One of the toughest tasks that data scientists face
day in and day out is data processing and feature engineering. Hence it is of paramount importance that you
understand the various aspects involved with deriving features from raw data. This chapter is intended to be
used both as a starting ground as well as a reference guide for understanding what techniques and strategy
should be applied when trying to engineer features on your own datasets. We cover the basic concepts of
feature engineering, scaling, and selection and also the importance behind each of these processes. Feature
engineering techniques are covered extensively for diverse data types including numerical, categorical, text,

252

CHAPTER 4 FEATURE ENGINEERING AND SELECTION

temporal and images. Multiple feature scaling techniques are also covered, which are useful to tone down
the scale and magnitude of features before modeling. Finally, we cover feature selection techniques in detail
with emphasis on the three different strategies of feature selection namely filter, wrapper, and embedded
methods. Special sections on dimensionality reduction and automated feature extraction using Deep
Learning have also been included since they have gained a lot of prominence in both research as well as the
industry. I want to conclude this chapter by leaving you with the following quote by Peter Norvig, renowned
computer scientist and director at Google, which should reinforce the importance of feature engineering.

“More data beats clever algorithms, but better data beats more data.”
—Peter Norvig

253

CHAPTER 5

Building, Tuning,
and Deploying Models

A very popular saying in the Machine Learning community is “70% of Machine Learning is data processing”
and going by the structure of this book, the quote seems quite apt. In the preceding chapters, you saw how
you can extract, process, and transform data to convert it to a form suitable for learning using Machine
Learning algorithms. This chapter deals with the most important part of using that processed data, to

learn a model that you can then use to solve real-world problems. You also learned about the CRISP-DM
methodology for developing data solutions and projects—the step involving building and tuning these
models is the final step in the iterative cycle of Machine Learning.

If you followed all the steps prescribed in the earlier chapters by now you must have a cleaned and
processed data\feature set. This data will mostly be numeric in the form of arrays or dataframes (feature
set). Most Machine Learning algorithms require the data to be in a numeric format as at the heart of any
Machine Learning algorithm, we have some mathematical equations and an optimization problem to either
minimize error\loss or maximize profit. Hence Machine Learning algorithms always work on numeric data.
Check out Chapter 4 for feature engineering techniques to convert structured as well as unstructured data
into ready-to-use numeric formats. We start this chapter by learning about different types of algorithms you
can use. Then you will learn how to choose a relevant algorithm for the data that you have, you will then be
introduced to the concept of hyperparameters and learn how to tune the hyperparameters of any algorithm.
The chapter also covers a novel approach to interpreting models using open source frameworks. Besides
this, you will also learn about persisting and deploying the developed models so you can start using them for
your own needs and benefits.

Based on the preceding topics, the chapter includes into the following five major sections:

e Building models

e Model evaluation techniques
e Model tuning

e Model interpretation

e Deploying models in action

You should be fully acquainted with the material of the earlier chapters, since it will help in a better
understanding of the various aspects of this chapter. All the code snippets and examples used in this
chapter are available in the GitHub repository for this book at https://github.com/dipanjanS/practical-
machine-learning-with-python under the directory/folder for Chapter 5. You can refer to the Python file
named model build_tune_deploy.py for all the examples used in this chapter and try the examples as you
read this chapter or you can even refer to the jupyter notebook named Building, Tuning and Deploying
Models.ipynb for a more interactive experience.

© Dipanjan Sarkar, Raghav Bali and Tushar Sharma 2018 255
D. Sarkar et al., Practical Machine Learning with Python, https://doi.org/10.1007/978-1-4842-3207-1_5

https://doi.org/10.1007/978-1-4842-3207-1_5
http://dx.doi.org/10.1007/978-1-4842-3207-1_4
https://github.com/dipanjanS/practical-machine-learning-with-python
https://github.com/dipanjanS/practical-machine-learning-with-python
http://dx.doi.org/10.1007/978-1-4842-3207-1_5

CHAPTER 5 ' BUILDING, TUNING, AND DEPLOYING MODELS

Building Models

Before we get on with the process of building models, we should try to understand what a model represents.
In the simplest of terms, a model can be described as a relationship between output or response variables
and its corresponding input or independent variables in a dataset. Sometimes this relationship can just be
among input variables (in case of datasets with no defined output or dependent variables). This relationship
among variables can be expressed in terms of mathematical equations, functions, and rules, which link the
output of the model to its inputs.

Consider the case of linear regression analysis, the output in that case is a set of parameters also known
as weights or coefficients (we explore this later in the chapter) and those parameters define the relationship
between the input and output variables. The idea is to build a model using a learning process, such that
you can learn the necessary parameters (coefficients) in the model that help translate the input variables
(independent) into the corresponding output variable (dependent) with the least error for a dataset
(leveraging validation metrics like mean squared error). The idea is not to predict a correct output value for
every input data point (leads to model over-fitting) but to generalize well over lots of data points such that
the error is minimum and the same is maintained when you use this model over new data points. This is
done by learning the right values of coefficients\parameters during the model building process. So when we
say we are learning a linear regression model, these are the set of important considerations implicit in that
statement. See Figure 5-1.

8
"

w

5 16

Final Model

Input Dataset Learning Algorithm Model

OLS Regression (Y =aX +b) Building

v {

(a=2,b=4)

Candidate Models
(Linear Regression)

Mi:(@=2b=1) | J
MZ (a=3, b=5)

Mn (a=2 b=4)

Figure 5-1. A high-level representation of model building

When we specify linear regression as the candidate model, we define the nature of relationship
between our dependent and independent variables. The candidate model then becomes all the possible
combinations of parameters for our model (more on this later). The learning algorithm is the way to
determine the most optimal value of those parameters using some optimization process and validating the
performance with some metrics (such as mean squared error to reduce the overall error). The final model
is nothing but most optimal value of our parameters as selected by our learning algorithm. So in the case of
simple linear regression is nothing but a tuple containing the values of our two parameters, a and b. A point
to remember here is that the term parameter is analogous to coefficients or weights in a model. There are
some other types of parameters called hyperparameters, which represent higher-level meta-parameters
of the model and do not depend on the underlying data. They usually need to be set before we start the

256

CHAPTER 5 " BUILDING, TUNING, AND DEPLOYING MODELS

building or learning process. Usually these hyperparameters are tuned to get the optimal values as a part of
the model-tuning phase (a part of the learning phase itself). Another important point to remember is that
the output model is generally dependent on the learning algorithm we choose for our data.

Model Types

Models can be differentiated on a variety of categories and nomenclatures. A lot of this is based on the
learning algorithm or method itself, which is used to build the model. Examples can be the model is linear
or nonlinear, what is the output of model, whether it is a parametric model or a non-parametric model,
whether it is supervised, unsupervised, or semi-supervised, whether it is an ensemble model or even a
Deep Learning based model. Refer to the section “Machine Learning Methods” in Chapter 1 to refresh your
memory of possible Machine Learning methods used for building models on datasets. In this section, we
focus on some of the most popular models from supervised and unsupervised learning methods.

Classification Models

Classification is one of the most readily recognizable Machine Learning tasks and it’s covered in detail in
Chapter 1. It is a subset of a broader class of Machine Learning problems known as supervised learning.
Supervised learning is the set of Machine Learning problems\tasks in which we have a labeled dataset with
input attributes and corresponding output labels or classes (discrete). These inputs and corresponding
outputs are then used in learning a generalized system, which can be used to predict results (output class
labels) for previously unseen data points. Classification is one major part of the overall supervised

learning domain.

The output of a classification model is normally a label or a category to which the input data point may
belong. The task of solving a classification (or in general any supervised) problem involves a training set of
data in which we have the data points labeled with their correct classes/categories. We then use supervised
Machine Learning algorithms specific to classification problems, to generalize something similar to a
classification function for our problem. The input to this classification function is exactly similar to the data
that we used to train our model. This input is typically data attributes or features that are generated in the
feature engineering step.

Typical classification models include the following major types of methods; however, the list is
not exhaustive.

e Linear models like logistic regression, Naive Bayes, and support vector machines
e Non-parametric models like K-nearest neighbors
e Treebased methods like decision trees

e Ensemble methods like random forests (bagging) and gradient boosted machines
(boosting)

e Neural networks (MLPs)

257

http://dx.doi.org/10.1007/978-1-4842-3207-1_1
http://dx.doi.org/10.1007/978-1-4842-3207-1_1

CHAPTER 5 ' BUILDING, TUNING, AND DEPLOYING MODELS

Classification models can be further broken down on the type of output variables and the
number of output variables produced by them. This nomenclature is extremely important to understand
the type of classification problem you are dealing with by looking at the dataset attributes and the objective
to be solved.

e Binary classification: When we have a total of two categories to differentiate
between in the output response variable in the data, then the problem is termed as
a binary classification problem. Hence you would need an appropriate model that
performs binary classification (known as a binary classification model). A popular
binary classification problem is the “Email classification problem” In this problem,
the candidate e-mails need to be classified and labeled into either of the two
different categories: “Spam” or “Non Spam” (also known as “Ham”).

e Multi-Class classification: This is an extension of the binary classification problem.
In this case we have more than two categories or classes into which our data can
be classified. An example of the multi-class classification problem is predicting
handwritten digits where a response variable can have any value ranging from 0 to
9. This becomes a 10-class classification problem. The multi-class classification is a
tough problem to solve and the general scheme for solving the multi-class problem
mostly involves some modifications of the binary classification problem.

e Multi-Label classification: These classification problems typically involve data
where the output variable is not always a single value but a vector having multiple
values or labels. A simple example is predicting categories of news articles that can
have multiple labels for each news article like science, politics, religion, and so on.

Classification models often output the actual class labels or probabilities for each possible class label
that gives a confidence level for each class in the prediction. The following are the major output formats
from classification models.

e Category classification output: In some classification models, the output for any
unknown data point is the predicted category or class label. These models usually
calculate the probabilities of all the categories, but report only one class label having
the maximum probability or confidence.

e Category probability classification output: In these classification models, the
output is the probability value of each possible class label. These models are
important when we want to further use the output produced by our classification
model for detailed analysis or to make complex decisions. A very simple example
can be a typical marketing candidate selection problem. In this problem, by getting
the probability output of a potential conversion, we can narrow down our marketing
expenses.

Regression Models

In classification models, we saw that the output variable predicted by the model was a discrete value; even
when we got the output as a probability value, those probability values were tied to the discrete class label
values of the possible categories. Regression models are another subset of the supervised learning family of
models. In these models, the input data is generally labeled with a real valued output variable (continuous
instead of discrete). Regression analysis is an important part of statistical learning and it has a very similar
utility, in the field of Machine Learning.

In statistical learning, regression analysis is used to find relationships between the dependent and the
independent variables (which can be one or more than one). In the case of regression models, when we feed
our new data points to our learned\trained regression model, the output of the model is a continuous value.

258

CHAPTER 5 " BUILDING, TUNING, AND DEPLOYING MODELS

Based on the number of variables, the probability distribution of output variables and form of relationship
(linear versus nonlinear), we have different types of regression models. The following are some of the major
categories of regression models.

e Simple linear regression: It is the simplest of all the regression models, but it is very
effective and widely used for practical purposes. In this case, we only have a single
independent variable and a single dependent variable. The dependent variable is a
real value and assumed to follow a normal distribution. In linear regression, while
developing the model we assume a linear relationship between the independent and
dependent variable.

e Multiple linear regression: It is the extension of the simple linear regression
model, to include more than one independent variable. The other assumptions
remain the same, i.e. the dependent variable is still a real value and follows a normal
distribution.

¢ Non linear regression: A regression model, in which the dependent variable is
dependent on nonlinear transformation of the parameters\coefficients, is termed
a nonlinear regression model. It is slightly different from models in which we use a
nonlinear transformation of the independent variables. Let’s consider an example to
make this point clear. Consider the model, y = § + # x* + €. In the previous model we
have used the square of the independent variable but the parameters of the models
(the betas, or coefficients) are still linear. Hence this model is still an example of a
linear regression model, or to be more specific, a polynomial regression model. The
model in which the coefficients are not linear is a model that can be termed as a
nonlinear regression model. Consider an example that will fulfill this criterion and
hence can be termed as a nonlinear regression model. y = f, + (log f3,)x* + €. These
models are quite hard to learn and hence not as widely used in practice. In most
cases, a linear model with nonlinear transformations applied to the input variables
usually suffices.

Regression models are a very important part of both statistics and Machine Learning and we encourage
you to refresh your memory by checking out the “Regression” section in Chapter 1 as well as to read some
standard literature on regression models to deep dive into further detailed concepts as necessary. We will be
looking at regression in a future chapter dealing with a real-world case study.

Clustering Models

We briefly talked about clustering in Chapter 1 in case you might want to refresh your memory. Clustering is
a member of a different class of Machine Learning methods, known as unsupervised learning. The simplest
definition of clustering is the process of grouping similar data points together that do not have any pre-
labeled classes or categories. The output of a typical clustering process is segregated groups of data points,
such that the data points in the same group are similar to each other but dissimilar from the members

(data points) of other groups. The major difference between the two methods is that, unlike supervised
learning, we don’t have a pre-labeled set of data that we can use to train and build our model. The input set
for unsupervised learning problems is generally the whole dataset itself. Another important hallmark of the
unsupervised learning set of problems is that they are quite hard to evaluate, as we will see in the later part
of this chapter.

259

http://dx.doi.org/10.1007/978-1-4842-3207-1_1
http://dx.doi.org/10.1007/978-1-4842-3207-1_1

CHAPTER 5 ' BUILDING, TUNING, AND DEPLOYING MODELS

Clustering models can be of different types on the basis of clustering methodologies and principles.
We will briefly introduce the different types of clustering algorithms, which are as follows.

e Partition based clustering: A partition based clustering method is the most natural
way to imagine the process of clustering. A partition based clustering method will
define a notion of similarity. This can be any measure that can be derived from the
attributes of the data points by applying mathematical functions on these attributes
(features). Then, on the basis of this similarity measure, we can group data points that
are similar to each other in a single group and separate the ones that are different. A
partition based clustering model is usually developed using a recursive technique, i.e.
we start with some arbitrary partitions of data and, based on the similarity measure,
we keep reassigning data points until we reach a stable stopping criteria. Examples
include techniques like K-means, K-medoids, CLARANS, and so on.

e Hierarchical clustering: A hierarchical clustering model is different from the
partition based clustering model in the way they are developed and the way
they work. In a hierarchical clustering paradigm, we either start with all the data
points in one group (divisive clustering) or all the data points in different groups
(agglomerative). Based on the starting point we can either keep dividing the big
group into smaller groups or clusters based on some accepted similarity criteria
or we can keep merging different groups or clusters into bigger ones based on the
same criteria. This process is normally stopped when a decided stopping condition
is achieved. Similarity criteria could be inter-data point distance in a cluster as
compared to other cluster data points. Examples include Ward’s minimum variance
criterion based agglomerative hierarchical clustering.

e Density based clustering: Both the clustering models mentioned previously
are quite dependent on the notion of distance. This leads to these algorithms
primarily finding out spherical clusters of data. This can become a problem when
we have arbitrary shaped clusters in the data. This limitation can be addressed
by doing away with the concept of a distance metric based clustering. We can
define a notion of “density” of data and use that to develop our cluster. The cluster
development methodology then changes from finding points in the vicinity of some
points to finding areas where we have some data points. This approach is not as
straightforward to interpret as the distance metric approach but it leads to clusters
that necessarily need not be spherical. This is very desirable trait as it is unlikely that
all the clusters of interest will be spherical in shape. Examples include DBSCAN and
OPTICS.

Learning a Model

We have been talking about building models, learning parameters, and so on, since the very start of this
chapter. In this section, we explain what we actually mean by the term building a model from the perspective
of Machine Learning. In the following section, we briefly discuss the mathematical aspects of learning a
model by taking a specific model as an example to make things clearer. We try to go light on the math in

this section, so that you don’t get overwhelmed with excess information. However, interested readers are
recommended to check out any standard book on theoretical and conceptual details of Machine Learning
models and their implementations (we recommend An Introduction to Statistical Learning by Tibshirani
etal. http://www.springer.com/in/book/9781461471370).

260

http://www.springer.com/in/book/9781461471370

CHAPTER 5 " BUILDING, TUNING, AND DEPLOYING MODELS

Three Stages of Machine Learning

Machine Learning can often be a complex field. We have different types of problems and tasks and different
algorithms to solve them. We also have complex matbh, stats, and logic that form the very backbone of this
diverse field. If you remember, you learned in the first chapter that Machine Learning is a combination of
statistics, mathematics, optimization, linear algebra, and a bunch of other topics. But despair not; you do not
need to start learning all of them right away! These diverse set of Machine Learning practices can be mostly
unified by a simple three-stage paradigm. These three stages are:

e Representation
e Evaluation
e Optimization

Let’s now discuss each of these steps separately to understand how almost all of the Machine Learning
algorithms or methods work.

Representation

The first stage in any Machine Learning problem is the representation of the problem in a formal language.
This is where we usually define the Machine Learning task to be performed based on the data and the
business objective or problem to be solved. Usually this stage of the problem is masked as another

stage, which is the selection of the ML algorithm or algorithms (you might have multiple possible model
representations at this phase). When we select a target algorithm, we are implicitly deciding on the
representation that we want use for our problem. This stage is akin to deciding on the set of hypothesis
models,, any of which can be the solution of our problem. For example, when we decide the Machine
Learning task to be performed is regression looking at our dataset and then select linear regression as

our regression model. Then we have decided on the linear combination based relationship between the
dependent and the independent variables. Another implicit selection made in this stage is deciding on the
parameters/weights/coefficients of the model that we need to learn.

Evaluation

Once we decide on the representation of our problem and possible set of models, we need some judging
criterion or criteria that will help us choose one model over the others, or the best model from a set of
candidate models. The idea is to define a metric for evaluation or a scoring function\loss function that

will help enable this. This evaluation metric is generally provided in terms of an objective or an evaluation
function (can also be called a loss function). What these objective functions normally do is provide a
numerical performance value which will help us to decide on the effectiveness of any candidate model. The
objective function depends on the type of problem we are solving, the representation we selected, and other
things. A simple example would be the lower the loss or error rate, the better the model is performing.

Optimization

The final stage in the learning process is optimization. Optimization in this case can be simply described as
searching through all the hypothesis model space representations, to find the one that will give us the most
optimal value of our evaluation function. While this description of optimization hides the vast majority of
complexities involved in the process, it is a good way to understand the core principles. The optimization
method that we will normally use is dependent on the choice of representations and the evaluation function
or functions. Fortunately we already have a huge set of robust optimizers we can use once we have decided

261

CHAPTER 5 ' BUILDING, TUNING, AND DEPLOYING MODELS

on the representation and the evaluation aspects. Optimization methods can be methods like gradient
descent and even meta-heuristical methods like generic algorithms.

The Three Stages of Logistic Regression

The best way to understand the nuances of a complex process is to explain it using an example. In this
section, we trace the three stages of the Machine Learning process, using the logistic regression model.
Logistic regression is an extension of linear regression to solve classification problems. We will see how a
simple logistic regression problem is solved using a gradient descent based optimization, which is one of the
most popular optimization methods.

Representation

The representation of a logistic regression is obtained by applying the logit function to the representation of
linear regression model. The linear regression representation is given by this hypothesis function:

h(0)=60"x

Here, 6 represents the parameters of the model and x is the input vector. The logit function is given by:

Applying the logit function on the representation of linear regression gives us the representation of
logistic regression.

This is our representation for the logistic regression model. As the value of logit function ranges
between 0 and 1, we can decide between the two categories by supplying an input vector x and a set of
parameters 0 and calculating the value of h(0) If it is less than 0.5 then typically the label is 0; otherwise, the
label is 1 (binary classification problems leverage this).

Evaluation

The next step in the process is specifying an evaluation or cost function. The cost function in our case is
dependent on the actual class of the data point. Suppose the output of the logit function is 0.75 for a data
point whose class is 1, then the error or loss of that case is 0.25. But if that data point is of category 0 then the
error is 0.75. Using this analogy, we can define the cost function for one data point as follows.

cost (I, (x),y) ={ il

Leveraging the previous logic, the cost function for the whole dataset is given by:
cost(0)=1(0)=D.y' log(h(xi)) +(1—yi)log(1 —h(xi))
i=1

262

CHAPTER 5 " BUILDING, TUNING, AND DEPLOYING MODELS

Optimization

The cost function we described earlier is a function of @ and hence we need to maximize the previous
function and find the set of 8 that gives us the maximum value (normally we will minimize the cost function,
but here we have taken a log and hence we will maximize the log function). The value 6 that we obtain by
represents the model (parameters) that we wanted to learn.

The basic idea of maximizing or minimizing a function is that you differentiate the function and find
the point where the gradient is zero. That is the point where the function is taking either a minimum or a
maximum value. But we have to keep in mind that the function that we have is a nonlinear function in the
parameter 0. Hence we won'’t be able to directly solve for the optimal values of 6. This is where we introduce
the concept of the gradient descent method.

In the simplest terms, gradient descent is the process in which we calculate the gradient of the function
we want to optimize at each point and then keep moving in the direction of negative gradient values. Here by
moving, we mean to update the values of @ according to the gradient that we calculate.

We can calculate the gradient of the cost function with respect to each component of the parameter
vector as follows:

%:(y—ho(x))xj

J

By repeating this calculation for each of the component of parameter vector, we can calculate the
gradient of the function with respect to the whole parameter vector. Once we get the gradient, the next step
is to update the new set of parameter vector values using this equation.

0,:=0, +a((yi —h, (xi))xj.

Here, a represents the small step we want to take in the direction of the gradient. « is a hyperparameter
of the optimization process (you can think of it as a learning rate or learning step size) and its value can
determine whether we reach a global minima or a local one.

If we keep reiterating the process, we will reach a point where our cost function will not change much
irrespective of any small update that we make to values of 6. Using this method, we can obtain the optimal
set of parameter values.

Keep in mind that this is a simple description of gradient to make things easy to understand and
interpret. Usually there are many other considerations involved in solving an optimization problem and
a vast set of challenges. The main intent of this section is to make you aware of how optimization is an
essential part of any Machine Learning problem.

Model Building Examples

The future chapters of this book are dedicated to build and tune models on real-world datasets. So we will
be doing a lot of model building, tuning, and evaluation in general. In this section, we want to depict some
examples of each category of models that we discussed in the previous section. This will serve as a ready
reckoner starting guide for our model building exploits in the future.

263

CHAPTER 5 ' BUILDING, TUNING, AND DEPLOYING MODELS

Classification

In all classification (or supervised learning) problems, the first step after preparing the whole dataset is

to segregate the data into a testing and a training set and optionally a validation set. The idea is to make

the model learn by training it on the train dataset, evaluate and tune it on the validation dataset, or use
techniques like cross validation and finally check its performance on the test dataset. You will learn in the
model evaluation section of this chapter that evaluating a model is a critical part of any Machine Learning
solution. Hence, as a rule of thumb, we must always remember that the actual evaluation of a Machine
Learning algorithm is always on the data that it has not previously seen (even cross validation on the training
dataset will use a part of the train data for model building and the rest for evaluation).

Sometimes we will use the whole dataset to train the model and then use some subset of it as a test set.
This is a common mistake done by many of us often in Machine Learning. To accurately analyze a model,
it must generalize well and perform well on data that it has never seen before. A good evaluation metric on
training data but a bad performance on unseen (validation or test) data means that the algorithm has failed
to produce a generalized solution for the problem (more on this later).

For our classification example, we will use a popular multi-class classification problem we talked about
earlier, handwritten digit recognition. The data for the same is available as part of the scikit-learn library.
The problem here is to predict the actual digit value from a handwritten image of a digit. In its original
form the problem comes in the domain of image based classification and computer vision. In the dataset
we have is a 1x64 feature vector, which represents the image representation of a grey scale image of the
handwritten digit.

Before we proceed to building any model, let’s first see how both the data and the image we intend to
analyze look. The following code will load the data for the image at index 10 and plot it.

In [2]: from sklearn import datasets
.t import matplotlib.pyplot as plt
...t %matplotlib inline
: digits = datasets.load_digits()

.t plt.figure(figsize=(3, 3))
...t plt.imshow(digits.images[10], cmap=plt.cm.gray 1)

The image generated by the code is depicted in Figure 5-2. Any guesses as to which number it represents?

n

n

~N oo s W N - O

0 2 4 6

Figure 5-2. Handwritten digit data representing the digit zero

264

CHAPTER 5 " BUILDING, TUNING, AND DEPLOYING MODELS

We can determine how the raw pixel data looks the flattened vector representation and the number
(class label), which is represented by the image using the following code.

actual image pixel matrix
In [3]: digits.images[10]

Out[3]:
array([[o., o., 1., 9., 15., 11., 0., 0.],
[o., o., 11., 16., 8., 14., 6., 0.],
[o., 2., 16., 10., ©0., 9., 9., o0.],
[o., 1., 16., 4., 0., 8., 8., o0.],
[o., 4., 16., 4., 0., 8., 8., o0.],
[o., 1., 16., 5., 1., 11., 3., o0.],
[o., o., 12., 12., 10., 10., 0., O0.],
[o.,, o0., 1., 10., 13., 3., 0., o0.]])
flattened vector
In [4]: digits.data[10]
Out[4]:
array([o., o., 1., 9., 15., 1., 0., O., 0., O., 11., 16., 8., 14.,
6., 0., 0., 2., 16., 10., 0., 9., 9., 0., 0., 1., 16., 4.,
o., 8., 8., o., o0., 4., 16., 4., o0., 8., 8., 0., 0., 1.,
16., 5., 1., 1., 3., o0., o0., 0., 12., 12., 10., 10., 0., O.,
o., ©0., 1., 10., 13., 3., 0., 0.])

image class label
In [5]: digits.target[10]
Out[5]: 0

We will later see that we can frame this problem in a variety of ways. But for this tutorial we will use
a logistic regression model to do this classification. Before we proceed to model building, we will split
the dataset into separate test and train sets. The size of the test set is generally dependent on the total
amount of data available. In our example, we will use a test set, which is 30% of the overall dataset. The total
data points in each dataset is printed for ease of understanding

In [12]: X _digits = digits.data
...: y digits = digits.target

: num_data_points = len(X_digits)

.t X _train = X digits[:int(.7 * num_data points)]
...ty train = y digits[:int(.7 * num_data_points)]
..t X _test = X digits[int(.7 * num_data points):]
:y test = y digits[int(.7 * num data points):]
...t print(X_train.shape, X test.shape)
(1257, 64) (540, 64)

From the preceding output, we can see our train dataset has 1257 data points and the test dataset
has 540 data points. The next step in the process is specifying the model that we will be using and the
hyperparameter values that we want to use. The values of these hyperparameters do not depend on the
underlying data and are usually set prior to model training and are fine tuned for extracting the best model.
You will learn about tuning later on in this chapter. For the time being, we will use the default values as
depicted when we initialize the model estimator and fit our model on the training set.

265

CHAPTER 5 ' BUILDING, TUNING, AND DEPLOYING MODELS

In [14]: from sklearn import linear model

...: logistic = linear model.logisticRegression()
...t logistic.fit(X train, y train)

LogisticRegression(C=1.0, class weight=None, dual=False, fit intercept=True,
intercept scaling=1, max_iter=100, multi_class="ovr', n_jobs=1,
penalty="12", random_state=None, solver='liblinear', tol=0.0001,
verbose=0, warm_start=False)

You can see various hyperparameters and parameters of the model depicted in the preceding output.
Let’s now test the accuracy of this model on the test dataset.

In [15]: print('Logistic Regression mean accuracy: %f' % logistic.score(X test, y test))
Logistic Regression mean accuracy: 0.900000

This is all it takes in scikit-learn to fit a model like logistic regression. In the first step, we identified
the model that we wanted to use which in our case was a linear model, called logistic regression. Then we
called the it method of that object with our training data and its output labels. The it method updates
the model object with the learned parameters of the model. We then used the score method of the object to
determine the accuracy of the fitted model on our test set. So the model we developed without any intensive
tuning is 90% accurate at predicting handwritten digits.

This concludes our very basic example of fitting a classification model on our dataset. Note that our
dataset was in a fully processed and cleaned format. You need to ensure your data is in the same way before
you proceed to fit any models on it when solving any problem.

Clustering

In this section, you will learn how we can fit a clustering model on another dataset. In the example which
we will pick, we will use a labeled dataset to help us see the results of the clustering model and compare it
with actual labels. A point to remember here is that, usually labeled data is not available in the real world,
which is why we choose to go for unsupervised methods like clustering. We will try to cover two different
algorithms, one each from partitioning based clustering and hierarchical clustering.

The data that we will use for our clustering example will be the very popular Wisconsin Diagnostic
Breast Cancer dataset, which we covered in detail in Chapter 4 in the section “Feature Selection and
Dimensionality Reduction” Do check out those sections to refresh your memory. This dataset has 30
attributes or features and a corresponding label for each data point (breast mass) depicting if it has cancer
(malignant: label value 0) or no cancer (benign: label value 1). Let’s load the data using the following code.

import numpy as np
from sklearn.datasets import load breast_cancer

load data

data = load breast cancer()

X = data.data

y = data.target

print(X.shape, data.feature names)

(569, 30) ['mean radius' 'mean texture' 'mean perimeter' ... 'worst fractal dimension']

It is evident that we have a total of 569 observations and 30 attributes or features for each observation.

266

http://dx.doi.org/10.1007/978-1-4842-3207-1_4

CHAPTER 5 " BUILDING, TUNING, AND DEPLOYING MODELS

Partition Based Clustering

We will choose the simplest yet most popular partition based clustering model for our example, which

is K-means algorithm. This algorithm is a centroid based clustering algorithm, which starts with some
assumption about the total clusters in the data and with random centers assigned to each of the clusters.

It then reassigns each data point to the center closest to it, using Euclidean distance as the distance metric.
After each reassignment, it recalculates the center of that cluster. The whole process is repeated iteratively
and stopped when reassignment of data points doesn’t change the cluster centers. Variants include
algorithms like K-medoids.

Since we already know from the data labels that we have two possible types of categories either 0 or 1,
the following code tries to determine these two clusters from the data by leveraging K-means clustering. In
the real world, this is not always the case, since we will not know the possible number of clusters. This is one
of the most important downsides of K-means clustering.

from sklearn.cluster import KMeans

km = KMeans(n_clusters=2)
km. fit(X)

labels = km.labels_

centers = km.cluster centers_
print(labels[:10])
[o001010111]

Once the fit process is complete we can get the centers and labels of our two clusters in the dataset by
using the preceding attributes. The centers here refer to some numerical value of the dimensions of the data
(the 30 attributes in the dataset) around which data is clustered.

But can we visualize and compare the clusters with the actual labels? Remember we are dealing with
30 features and visualizing the clusters on a 30-dimensional feature space would be impossible to interpret
or even perform. Hence, we will leverage PCA to reduce the input dimensions to two principal components
and visualize the clusters on top of the same. Refer to Chapter 4 to learn more about principal component
analysis.

from sklearn.decomposition import PCA

pca = PCA(n_components=2)
bc_pca = pca.fit_transform(X)

The following code helps visualize the clusters on the reduced 2D feature space for the actual labels as
well as the clustered output labels.

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4))
fig.suptitle('Visualizing breast cancer clusters')
fig.subplots adjust(top=0.85, wspace=0.5)

axl.set title('Actual Labels')
ax2.set_title('Clustered Labels')

for i in range(len(y)):

if y[i] == o:
c1 = axi.scatter(bc_pca[i,0], bc pca[i,1],c="g"', marker=".")
if y[i] ==

c2 = axi.scatter(bc_pca[i,0], bc pca[i,1],c="r', marker=".")

267

http://dx.doi.org/10.1007/978-1-4842-3207-1_4

CHAPTER 5 ' BUILDING, TUNING, AND DEPLOYING MODELS

if labels[i] == o:

c3 = ax2.scatter(bc_pca[i,0], bc pca[i,1],c="g"', marker=".")

if labels[i]

c4 = ax2.scatter(bc_pca[i,0], bc pca[i,1],c="r"', marker=".")

11 = ax1.legend([c1, c2],
12 = ax2.legend([c3, c4],

[
[

0
0

1
)
1
)

1
"1

‘1)
D

Visualizing breast cancer clusters

Actual Labels

Clustered Labels

800 - 800
L] . L] 0
600 - . 600 1 1
400 - 400 -
200 - " 200 - 3 . i
01 - 01 S .. .
. * Lo oo "
-200 - -200 1 et I
-400 - . -400 - v %
-600 - -600 -
0 2000 4000 0 2000 4000

Figure 5-3. Visualizing clusters in the breast cancer dataset

From Figure 5-3, you can clearly see that the clustering has worked quite well and it shows distinct
separation between clusters with labels 0 and 1 and is quite similar to the actual labels. However we do
have some overlap where we have mislabeled some instances, which is evident in the plot on the right.
Remember in an actual real-world scenario, you will not have the actual labels to compare with and the

main idea is to find structures or patterns in your data in the form of these clusters. Another very important
point to remember is that cluster label values have no significance. The labels 0 and 1 are just values to
distinguish cluster data points from each other. If you run this process again, you can easily obtain the same
plot with the labels reversed. Hence even when dealing with labeled data and running clustering do not
compare clustered label values with actual labels and try to measure accuracy. Also another important note
is that if we had asked for more than two clusters, the algorithm would have readily supplied more clusters
but it would have been hard to interpret those and many of them would not make sense. Hence, one of

the caveats of using the K-means algorithm is to use it in the case where we have some idea about the total
number of clusters that may exist in the data.

268

CHAPTER 5 " BUILDING, TUNING, AND DEPLOYING MODELS

Hierarchical Clustering

We can use the same data to perform a hierarchical clustering and see if the results change much as
compared to K-means clustering and the actual labels. In scikit-learn we have a multitude of interfaces
like the AgglomerativeClustering class to perform hierarchical clustering. Based on what we discussed
earlier in this chapter as well as in Chapter 1, agglomerative clustering is hierarchical clustering using a
bottom up approach i.e. each observation starts in its own cluster and clusters are successively merged
together. The merging criteria can be used from a candidate set of linkages; the selection of linkage governs
the merge strategy. Some examples of linkage criteria are Ward, Complete linkage, Average linkage and so
on. We will leverage low-level functions from scipy however because we still need to mention the number
of clusters in the AgglomerativeClustering interface which we want to avoid. Since we already have the
breast cancer feature set in variable X, the following code helps us compute the linkage matrix using Ward’s
minimum variance criterion.

from scipy.cluster.hierarchy import dendrogram, linkage
import numpy as np

np.set printoptions(suppress=True)

Z = linkage(X, 'ward")

print(Zz)

[[287. 336. 3.81596727 2.]
[106. 420. 4.11664267 2.]
[55. 251. 4.93361024 2.]
cees

[1130. 1132. 6196.07482529 86.]
[1131. 1133. 8368.99225244 483.]
[1134. 1135. 18371.10293626 569. 1]

On seeing the preceding output, you might think what does this linkage matrix indicate? You can think
of the linkage matrix as a complete historical map, keeping track of which data points were merged into
which cluster during each iteration. If you have n data points, the linkage matrix, Z will be having a shape of
(n—1) x4 where Z[i] will tell us which clusters were merged at the i iteration. Each row has four elements,
the first two elements are either data point identifiers or cluster labels (in the later parts of the matrix once
multiple data points are merged), the third element is the cluster distance between the first two elements
(either data points or clusters), and the last element is the total number of elements\data points in the
cluster once the merge is complete. We recommend you refer to https://docs.scipy.org/doc/scipy/
reference/generated/scipy.cluster.hierarchy.linkage.html, which explains this in detail. The best
way to visualize these distance-based merges is to use a dendrogram, as shown in Figure 5-4.

plt.figure(figsize=(8, 3))
plt.title('Hierarchical Clustering Dendrogram')
plt.xlabel('Data point")

plt.ylabel('Distance")

dendrogram(Z)

plt.axhline(y=10000, c="k', 1ls='--', 1w=0.5)
plt.show()

269

http://dx.doi.org/10.1007/978-1-4842-3207-1_1
https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html

CHAPTER 5 ' BUILDING, TUNING, AND DEPLOYING MODELS

Hierarchical Clustering Dendrogram

17500
15000 -
12500 A
10000 1
7500 -
5000 1

2502 1 | ! I

Distance

r’aﬁ;&&

Data point

Figure 5-4. Visualizing the hierarchical clustering dendrogram

In the dendrogram depicted in Figure 5-4, we can see how each data point starts as an individual cluster
and slowly starts getting merged with other data points to form clusters. On a high level from the colors and
the dendrogram, you can see that the model has correctly identified two major clusters if you consider a
distance metric of around 10000 or above. Leveraging this distance, we can get the cluster labels using the
following code.

from scipy.cluster.hierarchy import fcluster

max_dist = 10000
hc_labels = fcluster(Z, max_dist, criterion="distance")

Let’s compare how the cluster outputs look based on the PCA reduced dimensions as compared to the
original label distribution (detailed code is in the notebook). See Figure 5-5.

Visualizing breast cancer clusters

Actual Labels Hierarchical Clustered Labels

800 - - 800 " p
600 - ! 600 - 2
400 - 400 4
200 - 2 200 -
0 - . 04
-200 1 ’ -200 1 >
-400 - X . -400 1 .
—600 - . -600 4
0 2000 4000 0 2000 4000

Figure 5-5. Visualizing hierarchical clusters in the breast cancer dataset

270

CHAPTER 5 " BUILDING, TUNING, AND DEPLOYING MODELS

We definitely see two distinct clusters but there is more overlap as compared to the K-means method
between the two clusters and we have more mislabeled instances. However, do take a note of the label
numbers; here we have 1 and 2 as the label values. This is just to reinforce the fact that the label values are
just to distinguish the clusters and don’t mean anything. The advantage of this method is that you do not
need to input the number of clusters beforehand and the model tries to find it from the underlying data.

Model Evaluation

We have seen the process of data retrieval, processing, wrangling and modeling based on various
requirements. A logical question that follows is how we can make the judgment whether a model is good or
bad? Just because we have developed something fancy using a renowned algorithm, doesn’t guarantee its
performance will be great. Model evaluation is the answer to these questions and is an essential part of the
whole Machine Learning pipeline. We have mentioned it quite a number of times in that past about how
model development is an iterative process. Model evaluation is the defining part of the iterative process
which makes it iterative in nature. Based on model evaluation and subsequent comparisons we can take
a call whether to continue our efforts in model enhancement or cease them and which model should be
selected as the final model to be used\deployed. Model evaluation also helps us in the very important
process of tuning the hyperparameters of the model and also deciding scenarios like, if the intelligent
feature that we just developed is adding any value to our model or not. Combining all these arguments
makes a compelling case for having a defined process for model evaluation and what metrics can be used to
measuring and evaluating models.

So how can we evaluate a model? How can we make a decision whether Model A is better or Model
B performs better? The ideal way is to have some numerical measure or metric of a model’s effectiveness
and use that measure to rank and select models. This will be one of the primary ways for us to evaluate
models but we should also keep in mind that a lot of times these evaluation metrics may not capture the
required success criteria of the problem we are trying to solve. In these cases, we will be required to become
imaginative and adapt these metrics to our problem and use things like business constraints and objectives.

Model evaluation metrics are highly dependent on the type of model we have, so metrics for regression
models will be different from the classification models or clustering models. Considering this dependency
we will break this section down in three sub-sections. We cover the major model evaluation metrics for three
categories of models.

Evaluating Classification Models

Classification models are one of the most popular models among Machine Learning practitioners. Due to
their popularity, it is essential to know how to build good quality, generalized models. They have a varied
set of metrics that can be used to evaluate classification models. In this section, we target a small subset of
those metrics that are essential. We use the models that we developed in the previous section to illustrate
them in detail. For this, let’s first prepare train and test datasets to build our classification models. We will
be leveraging the X and y variables from before, which holds the data and labels for the breast cancer dataset
observations.

from sklearn.model selection import train_test split
X _train, X test, y train, y test = train test split(X, y, test size=0.3, random_state=42)

print(X_train.shape, X test.shape)
(398, 30) (171, 30)

271

CHAPTER 5 ' BUILDING, TUNING, AND DEPLOYING MODELS

From the preceding output, it is clear that we have 398 observations in our train dataset and 171
observations in our test dataset. We will be leveraging a nifty module we have created for model evaluation.
Itis named model_evaluation_utils and you can find it along with the code files and notebooks for this
chapter. We recommend you to check out the code, which leverages the scikit-learn metrics module to
compute most of the evaluation metrics and plots.

Confusion Matrix

Confusion matrix is one of the most popular ways to evaluate a classification model. Although the matrix by
itself is not a metric, the matrix representation can be used to define a variety of metrics, all of which become
important in some specific case or scenario. A confusion matrix can be created for a binary classification as
well as a multi-class classification model.

A confusion matrix is created by comparing the predicted class label of a data point with its actual class
label. This comparison is repeated for the whole dataset and the results of this comparison are compiled
in a matrix or tabular format. This resultant matrix is our confusion matrix. Before we go any further, let’s
build a logistic regression model on our breast cancer dataset and look at the confusion matrix for the model
predictions on the test dataset.

from sklearn import linear_model

train and build the model

logistic = linear_model.LlogisticRegression()
logistic.fit(X train,y train)

predict on test data and view confusion matrix
import model_evaluation_utils as meu

y pred = logistic.predict(X_ test)
meu.display confusion matrix(true labels=y test, predicted labels=y pred, classes=[0, 1])

Predicted:
0 1
Actual: 0 59 4
1 2 106

The preceding output depicts the confusion matrix with necessary annotations. We can see that out of
63 observations with label 0 (malignant), our model has correctly predicted 59 observations. Similarly out of
108 observations with label 1 (benign), our model has correctly predicted 106 observations. More detailed
analysis is coming right up!

Understanding the Confusion Matrix

While the name itself sounds pretty overwhelming, understanding the confusion matrix is not that confusing
once you have the basics right! To reiterate what you learned in the previous section, the confusion matrix

is a tabular structure to keep a track of correct classifications as well as misclassifications. This is useful to
evaluate the performance of a classification model for which we know the true data labels and can compare
with the predicted data labels. Each column in the confusion matrix represents classified instance counts
based on predictions from the model and each row of the matrix represents instance counts based on the
actual\true class labels. This structure can also be reversed, i.e. predictions depicted by rows and true labels
by columns. In a typical binary classification problem, we usually have a class label which defined as the
positive class which is basically the class of our interest. For instance in our breast cancer dataset, let’s say we

272

CHAPTER 5 " BUILDING, TUNING, AND DEPLOYING MODELS

are interested in detecting or predicting when the patient does not have breast cancer (benign). Then label 1
is our positive class. However, suppose our class of interest was to detect cancer (malignant) then we could
have chosen label 0 as our positive class. Figure 5-6 shows a typical confusion matrix for a binary classification
problem, where p denotes the positive class and n denotes the negative class.

PREDICTED LABELS

n' p'
(Predicted) (Predicted)

mc -

n ‘ (Number of instances of
(True) (Number of mstan?e.s of negative class 'n’
negative clags n incorrectly predicted as
correctly predicted) the positive class p')

True Negative False Positive

Or-rmomw>»rnr

(Number of instances of
(I'rue) positive class p’ (Number of instances of
incorrectly predicted as positive class p’
the negative class n’) correctly predicted)

False Negative | True Positive
p

Figure 5-6. Typical structure of a confusion matrix

Figure 5-6 should make things more clear with regard to the structure of confusion matrices. In general,
we usually have a positive class as we discussed earlier and the other class is the negative class. Based on this
structure, we can clearly see four terms of importance.

True Positive (TP): This is the count of the total number of instances from the
positive class where the true class label was equal to the predicted class label, i.e. the
total instances where we correctly predicted the positive class label with our model.

False Positive (FP): This is the count of the total number of instances from the
negative class where our model misclassified them by predicting them as positive.
Hence the name, false positive.

True Negative (FN): This is the count of the total number of instances from the
negative class where the true class label was equal to the predicted class label, i.e. the
total instances where we correctly predicted the negative class label with our model.

False Negative (FN): This is the count of the total number of instances from the
positive class where our model misclassified them by predicting them as negative.
Hence the name, false negative.

273

CHAPTER 5 ' BUILDING, TUNING, AND DEPLOYING MODELS

Thus based on this information, can you compute the previously mentioned metrics for our confusion
matrix based on the model predictions on the breast cancer test data?

positive class = 1

TP = 106
FP = 4
™N = 59
FN = 2

Performance Metrics

The confusion matrix by itself is not a performance measure for classification models. But it can be used to
calculate several metrics that are useful measures for different scenarios. We will describe how the major
metrics can be calculated from the confusion matrix, compute them manually using necessary formulae,
and then compare the results with functions provided by scikit-learn on our predicted results and give an
intuition of scenarios where each of those metric can be used.

Accuracy: This is one of the most popular measures of classifier performance. It is defined as the overall
accuracy or proportion of correct predictions of the model. The formula for computing accuracy from the
confusion matrix is:

TP+TN

Accuracy=———————
TP+ FP+TN +FN

Accuracy measure is normally used when our classes are almost balanced and correct predictions of
those classes are equally important. The following code computes accuracy on our model predictions.

fw_acc = round(meu.metrics.accuracy score(y true=y test, y pred=y pred), 5)
mc_acc = round((TP + TN) / (TP + TN + FP + FN), 5)

print('Framework Accuracy:', fw_acc)

print('Manually Computed Accuracy:', mc_acc)

Framework Accuracy: 0.96491
Manually Computed Accuracy: 0.96491

Precision: Precision, also known as positive predictive value, is another metric that can be derived from
the confusion matrix. It is defined as the number of predictions made that are actually correct or relevant out
of all the predictions based on the positive class. The formula for precision is as follows:

TP

Precision =——————
TP + FP

A model with high precision will identify a higher fraction of positive class as compared to a model
with a lower precision. Precision becomes important in cases where we are more concerned about finding
the maximum number of positive class even if the total accuracy reduces. The following code computes
precision on our model predictions.

fw_prec = round(meu.metrics.precision score(y true=y test, y pred=y pred), 5)
mc_prec = round((TP) / (TP + FP), 5)

print('Framework Precision:', fw prec)

print('Manually Computed Precision:', mc_prec)

274

CHAPTER 5 " BUILDING, TUNING, AND DEPLOYING MODELS

Framework Precision: 0.96364
Manually Computed Precision: 0.96364

Recall: Recall, also known as sensitivity, is a measure of a model to identify the percentage of relevant
data points. It is defined as the number of instances of the positive class that were correctly predicted. This is
also known as hit rate, coverage, or sensitivity. The formula for recall is:

P

Recall=———
TP+ FN

Recall becomes an important measure of classifier performance in scenarios where we want to catch
the most number of instances of a particular class even when it increases our false positives. For example,
consider the case of bank fraud, a model with high recall will give us higher number of potential fraud cases.
But it will also help us raise alarm for most of the suspicious cases. The following code computes recall on
our model predictions.

fw_rec = round(meu.metrics.recall score(y true=y test, y pred=y pred), 5)
mc_rec = round((TP) / (TP + FN), 5)

print('Framework Recall:', fw rec)

print('Manually Computed Recall:', mc_rec)

Framework Recall: 0.98148
Manually Computed Recall: 0.98148

F1 Score: There are some cases in which we want a balanced optimization of both precision and recall.
F1 score is a metric that is the harmonic mean of precision and recall and helps us optimize a classifier for
balanced precision and recall performance.

The formula for the F1 score is:

F1 Score = 2x Precision x Recall

Precision+ Recall

Let’s compute the F1 score on the predictions made by our model using the following code.

fw_f1 = round(meu.metrics.f1 score(y true=y test, y pred=y pred), 5)
mc_f1 = round((2*mc_prec*mc_rec) / (mc_prec+mc_rec), 5)
print('Framework Fi-Score:', fw_f1)

print('Manually Computed F1-Score:', mc_f1)

Framework F1-Score: 0.97248
Manually Computed F1-Score: 0.97248

Thus you can see how our manually computed metrics match the results obtained from the scikit-learn
functions. This should give you a good idea of how to evaluate classification models with these metrics.

275

CHAPTER 5 ' BUILDING, TUNING, AND DEPLOYING MODELS

Receiver Operating Characteristic Curve

ROC which stands for Receiver Operating Characteristic is a concept from early Radar days. This concept
can be extended to evaluation of binary classifiers as well as multi-class classifiers (Note that to adapt the
ROC curve for multi-class classifiers we have to use one-vs-all scheme and averaging techniques like macro
and micro averaging.) It can be interpreted as the effectiveness with which the model can distinguish
between actual signal and the noise in the data.

The ROC curve can be created by plotting the fraction of true positives versus the fraction of false
positives, i.e. it is a plot of True Positive Rate (TPR) versus the False Positive Rate (FPR). It is applicable
mostly for scoring classifiers. Scoring classifiers are the type of classifiers which will return a probability
value or score for each class label, from which a class label can be deduced (based on maximum probability
value). This curve can be plotted using the true positive rate (TPR) and the false positive rate (FPR) of a
classifier. TPR is known as sensitivity or recall, which is the total number of correct positive results, predicted
among all the positive samples the dataset. FPR is known as false alarms or (1 - specificity), determining the
total number of incorrect positive predictions among all negative samples in the dataset. Although we will
rarely be plotting the ROC curve manually, it is always a good idea to understand how they can be plotted.
The following steps can be followed to plot a ROC curve given the class label probabilities of each data point
and their correct or true labels.

1. Order the outputs of the classifier by their scores (or the probability of being the
positive class).

2. Start at the (0, 0) coordinate.

3. For each example x in the sorted order:

1
e Ifxis positive, move — up
pos

e Ifxisnegative, move X right
neg

Here pos and neg are the fraction of positive and negative examples respectively. The idea is that
typically in any ROC curve, the ROC space is between points (0, 0) and (1, 1). Each prediction result from the
confusion matrix occupies one point in this ROC space. Ideally, the best prediction model would give a point
on the top left corner (0, 1) indicating perfect classification (100% sensitivity & specificity). A diagonal line
depicts a classifier that does a random guess. Ideally if your ROC curve occurs in the top half of the graph,
you have a decent classifier which is better than average. You can always leverage the roc_curve function
provided by scikit-learn to generate the necessary data for an ROC curve. Refer to http://scikit-learn.
org/stable/auto_examples/model selection/plot_roc.html for further details. Figure 5-7 shows a
sample ROC curve from the link we just mentioned.

276

http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html

CHAPTER 5 " BUILDING, TUNING, AND DEPLOYING MODELS

Receiver operating characteristic example

1.0 - -
[—] A
[’I
. -
0.8 4 g
-~
I’

2 S
L 5 -
- D6+ Pad
B ’,'
A
g [o
[T} I,

0.4 1 ”
£ Hj .

-”
-
-
,f
0.2 - [/,
. | -*
,/
’f ~— ROC curve {area = 0.79)
0.0 y ’ v -
0.0 02 0.4 0.6 0.8 1.0

False Positive Rate

Figure 5-7. Sample ROC Curve (Source: http://scikit-learn.orq/stable/modules/model_evaluation.
html#roc-metrics)

Figure 5-7 depicts the sample ROC curve. In general, the ROC curve is an important tool for visually
interpreting classification models. But it doesn’t directly provide us with a numerical value that we can use to
compare models. The metric which does that task is the Area Under Curve popularly known as AUC. In the
ROC plot in Figure 5-7, the area under the orange line is the area under the classifier’s ROC curve. The ideal
classifier will have the unit area under the curve. Based on this value we can compare two models, generally
the model with the AUC score is a better one. We have built a generic function for plotting ROC curves
with AUC scores for binary as well as multi-class classification problems in our model evaluation utils
module. Do check out the function, plot_model roc_curve(...) to know more about it. The following code
plots the ROC curve for our breast cancer logistic regression model leveraging the same function.

meu.plot model roc curve(clf=logistic, features=X test, true labels=y test)

277

http://scikit-learn.org/stable/modules/model_evaluation.html#roc-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#roc-metrics

CHAPTER 5 ' BUILDING, TUNING, AND DEPLOYING MODELS

Receiver Operating Characteristic (ROC) Curve

10 'J—l ’f
”

08 P
LN o
£ -~
e ”'
da-l 0.6 1 ”l
E 4”
& P
aé 04 1 e
- ’4'

02 o

f”
’,f' = ROC curve (area = 1.00)
0.0 T T T T
0.0 02 04 06 08 10

False Positive Rate

Figure 5-8. ROC curve for our logistic regression model

Considering our model has an accuracy and F1 Score of around 97%, Figure 5-8 makes sense where we
see a near perfect ROC curve! Check out Chapter 9 to see a multi-class classifier ROC curve in action!

Evaluating Clustering Models

We discussed some of the popular ways to evaluate classification models in the previous section. The
confusion matrix alone provided us with a bunch of metrics that we can use to compare classification
models. The tables are turned drastically when it comes to evaluating clustering (or unsupervised models in
general). This difficulty arises from the lack of a validated ground truth in case of unsupervised models, i.e.
the absence of true labels in the data. In this section, you learn about some of the methods/metrics we can
use to evaluate the performance of our clustering models.

To illustrate the evaluation metrics with a real-world example, we will leverage the breast cancer
dataset available in the variables X for the data and y for the observation labels. We will also use the K-means
algorithm to fit two models on this data—one with two clusters and the second one with five clusters—and
then evaluate their performance.

km2 = KMeans(n_clusters=2, random state=42).fit(X)
km2_labels = km2.labels

kms = KMeans(n_clusters=5, random state=42).fit(X)
km5_labels = kms5.labels

External Validation

External validation means validating the clustering model when we have some ground truth available

as labeled data. The presence of external labels reduces most of the complexity of model evaluation as

the clustering (unsupervised) model can be validated in similar fashion to classification models. Recall

the breast cancer dataset example that we took in the first section of this chapter, we ran the labeled data
through a clustering algorithm. In that case we had two classes and we got two clusters from our algorithm.
However evaluating the performance is not as straightforward as classification algorithms.

278

http://dx.doi.org/10.1007/978-1-4842-3207-1_9

CHAPTER 5 " BUILDING, TUNING, AND DEPLOYING MODELS

If you remember our discussion earlier on cluster labels, they are just indicators used to distinguish data
points from each other based on which cluster or group they fall into. Hence we cannot compare a cluster
with label 0 directly with a true class label 0. It is possible that all data points with true class label of 0 were
actually clustered with label 1 during the clustering process. Based on this, we can leverage several metrics
to validate clustering performance when we have the true labels available. Three popular metrics can be
used in this scenario:

e Homogeneity: A clustering model prediction result satisfies homogeneity if all of
its clusters contain only data points that are members of a single class (based on the
true class labels).

e Completeness: A clustering model prediction result satisfies completeness if
all the data points of a specific ground truth class label are also elements of the
same cluster.

e V-measure: The harmonic mean of homogeneity and completeness scores gives us
the V-measure value.

Values are typically bounded between 0 and 1 and usually higher values are better. Let’s compute these
metric on our two K-means clustering models.

km2_hcv = np.round(metrics.homogeneity completeness v_measure(y, km2_ labels), 3)
kms5_hcv = np.round(metrics.homogeneity completeness v measure(y, km5 labels), 3)

print('Homogeneity, Completeness, V-measure metrics for num clusters=2: ', km2_hcv)
print('Homogeneity, Completeness, V-measure metrics for num clusters=5: ', km5_hcv)

Homogeneity, Completeness, V-measure metrics for num clusters=2: [0.422 0.517 0.465]
Homogeneity, Completeness, V-measure metrics for num clusters=5: [0.602 0.298 0.398]

We can see that the V-measure for the first model with two clusters is better than the one with five
clusters and the reason is because of higher completeness score. Another metric you can try out includes the
Fowlkes-Mallows score.

Internal Validation

Internal validation means validating a clustering model by defining metrics that capture the expected
behavior of a good clustering model. A good clustering model can be identified by two very desirable traits:

e Compact groups, i.e. the data points in one cluster occur close to each other.

e Well separated groups, i.e. two groups\clusters have as large distance among
them as possible.

We can define metrics that mathematically calculate the goodness of these two major traits and use
them to evaluate clustering models. Most of such metrics will use some concept of distance between data
points. The distance between data points can be defined using any candidate distance metric ranging from a
Euclidian distance, Manhattan distance, or any metric that meets the criteria for being a distance metric.

279

CHAPTER 5 ' BUILDING, TUNING, AND DEPLOYING MODELS

Silhouette Coefficient

Silhouette coefficient is a metric that tries to combine the two requirements of a good clustering model. The
silhouette coefficient is defined for each sample and is a combination of its similarity to the data points in its
own cluster and its dissimilarity to the data points not in its cluster.

The mathematical formula of silhouette coefficient for a clustering model with n data points is given by:

lz Sample SC,
noo

Here, sample SC is the silhouette coefficient for each of the samples. The formula for a sample’s
silhouette coefficient is,

b—a

S leSC=——
ampte max(b,a)

Here,
a = mean distance between a sample and all other points in the same class
b = mean distance between a sample and all other points in the next nearest cluster

The silhouette coefficient is usually bounded between -1 (incorrect clustering) and +1 (excellent quality
dense clusters). A higher value of silhouette coefficient generally means that the clustering model is leading
to clusters that are dense and well separated and distinguishable from each other. Lower scores indicate
overlapping clusters. In scikit-learn, we can compute the silhouette coefficient by using the silhouette
score function. The function also allows for different options for distance metrics.

from sklearn import metrics

km2_silc = metrics.silhouette score(X, km2_labels, metric='euclidean')
km5_silc = metrics.silhouette score(X, km5_labels, metric="euclidean")

print('Silhouette Coefficient for num clusters=2: ', km2_silc)
print('Silhouette Coefficient for num clusters=5: ', km5 silc)

Silhouette Coefficient for num clusters=2: 0.697264615606
Silhouette Coefficient for num clusters=5: 0.510229299791

Based on the preceding output, we can observe that from the metric results it seems like we have better
cluster quality with two clusters as compared to five clusters.

Calinski-Harabaz Index

The Calinski-Harabaz index is another metric that we can use to evaluate clustering models when the
ground truth is not known. The Calinski-Harabaz score is given as the ratio of the between-clusters
dispersion mean and the within-cluster dispersion. The mathematical formula for the score for k clusters is
given by,

_Tr(B,) N-k
S(k)iTr(Wk)x k-1

280

CHAPTER 5 " BUILDING, TUNING, AND DEPLOYING MODELS

Here,

W, :iZ(x—cq)(x—cq)T

q=1xec,

B, :Zq:nq(cq —c)(cq —C)T

With Tr being the trace of a matrix operator, N being the number of data points in our data, C, being the
set of points in cluster g, c, being the center of cluster g, ¢ being the center of E, and n, being the number of
points in cluster g.

Thankfully we can calculate this index without having to calculate this complex formula by leveraging
scikit-learn. A higher score normally indicates that the clusters are dense and well separated, which
relates to the general principles of clustering models.

km2_chi
km5_chi

metrics.calinski _harabaz_score(X, km2_ labels)
metrics.calinski _harabaz_score(X, km5_labels)

print('Calinski-Harabaz Index for num clusters=2: ', km2_chi)
print('Calinski-Harabaz Index for num clusters=5: ', km5 chi)

Calinski-Harabaz Index for num clusters=2: 1300.20822689
Calinski-Harabaz Index for num clusters=5: 1621.01105301

We can see that both the scores are pretty high with the results for five clusters being even higher. This
goes to show that just relying on metric number alone is not sufficient and you must try multiple evaluation
methods coupled with feedback from data scientists as well as domain experts.

Evaluating Regression Models

Regression models are an example of supervised learning methods and owing to the availability of the
correct measures (real valued numeric response variables), their evaluation is relatively easier than
unsupervised models. Usually in the case of supervised models, we are spoilt for the choice of metrics and
the important decision is choosing the right one for our use case. Regression models, like classification
models, have a varied set of metrics that can be used for evaluating them. In this section, we go through a
small subset of these metrics which are essential.

Coefficient of Determination or R?

The coefficient of determination measures the proportion of variance in the dependent variable which is
explained by the independent variable. A coefficient of determination score of 1 denotes a perfect regression
model indicating that all of the variance is explained by the independent variables. It also provides a
measure of how well the future samples are likely to be predicted by the model.

The mathematical formula for calculating r* is given as follows, where y is the mean of the dependent

variable, y, indicates the actual true response values, and Y; indicates the model predicted outputs.

Namples—1

~\2
R > vy
R(yy)=1-7—— 1()

Rsamples ™

% (yi_j/i)Z

281

CHAPTER 5 ' BUILDING, TUNING, AND DEPLOYING MODELS

In the scikit-learn package, this can be calculated by using the r2_score function by supplying it the
true values and the predicted values (of the output\response variable).

Mean Squared Error

Mean squared error calculates the average of the squares of the errors or deviation between the actual
value and the predicted values, as predicted by a regression model. The mean squared error or MSE can be
used to evaluate a regression model, with lower values meaning a better regression models with less errors.
Taking the square root of the MSE yields the root-mean-square-error or RMSE, which can also be used as an
evaluation metric for regression models.

The mathematical formula for calculating MSE and RMSE is quite simple and is given as follows:

MSE(y,5)= nm;m 2;, (-3

In the scikit-learn package the MSE can be calculated by invoking the mean_squared_error function
from the metrics module.

Regression models have many more metrics that can be used for evaluating them, including median
absolute error, mean absolute error, explained variance score, and so on. They are easy to calculate using
the functions provided by the scikit-learn library. Their mathematical formulae are easy to interpret and
have an intuitive understanding associated with them. We have only introduced two of them but you are
encouraged to explore other sets of metrics that can be used to regression models. We will look at regression
models in more detail in the next chapter.

Model Tuning

In the first two sections of this chapter, you learned how to fit models on our processed data and how to
evaluate those models. We will build further upon the concepts introduced till now. In this section, you will
learn an important characteristic of all Machine Learning algorithms (which we have been glossing over

till now), their importance, and how to find the optimal values for these entities. Model tuning is one of the
most important concepts of Machine Learning and it does require some knowledge of the underlying math
and logic of the algorithm in focus. Although we cannot deep dive into extensive theoretical aspects of the
algorithms that we discuss, we will try to give some intuition about them so that you are empowered to tune
them better and learn the essential concepts needed for the same.

The models we have developed till now were mostly the default models provided to us by the
scikit-learn package. By default we mean models with the default configurations and settings if you
remember seeing some of the model estimator object parameters. Since the datasets we were analyzing were
essentially not tough-to-analyze datasets, even models with default configurations turn up decent solutions.
The situation is not that rosy when it comes to actual real-world datasets that have a lot of features, noise,
and missing data. You will see in the subsequent chapters how the actual datasets are often tough to process,
wrangle, and even harder to model. Hence, it is unlikely that we will always use the default configured
models out of the box. Instead we will delve deeper into the models that we are targeting, look at the knobs
that can be tuned and set to extract the best performance out of any given models. This process of iterative
experimentation with dataset, model parameters, and features is the very core of the model tuning process.
We start this section by introducing these so-called parameters that are associated with ML algorithms, then
we try to justify why it is hard to have a perfect model, and in the last section we discuss some strategies that
we can pursue to tune our models.

282

CHAPTER 5 " BUILDING, TUNING, AND DEPLOYING MODELS

Introduction to Hyperparameters

What are hyperparameters? The simplest definition is that hyperparameters are meta parameters that are
associated with any Machine Learning algorithm and are usually set before the model training and building
process. We do this because model hyperparameters do not have any dependency on being derived from
the underlying dataset on which a model is trained. Hyperparameters are extremely important for tuning
the performance of learning algorithms. Hyperparameters are often confused with model parameters, but
we must keep in mind that hyperparameters are different than model parameters since they do not have
dependency on the data. In simple terms, model hyperparameters represent some high-level concepts or
knobs that a data scientist can tweak and tune during the model training and building process to improve its
performance. Let’s take an example to illustrate this in case you still have difficulty in interpreting them.

Decision Trees

Decision trees are one of the simplest and easy to interpret classification algorithms (also used in regression
sometimes; check out CART models). First you will learn how a decision tree is created as hyperparameters
are often tightly coupled with the actual intricacies of the algorithm. The decision tree algorithm is based on
a greedy recursive partitioning of the initial dataset (features). It leverages a decision tree based structure
for taking decisions of how to perform the partitions. The steps involved in learning a decision tree are as
follows:

1. Start with whole dataset and find the attribute (feature) that will best differentiate
between the classes. This best attribute is found out using metrics such as
Information gain or Gini impurity.

2. Once the best attribute is found, separate the dataset in two (or more parts)
based on the values of the attributes.

3. Ifany one part of the dataset contains only labels of one class, we can stop the
process for that part and label it as a leaf node of that class.

4. We repeat the whole process until we have leaf nodes in all, of which we have
data points of one class only.

The final model returned by the decision tree algorithm can be represented as a flow chart (the core
decision tree structure). Consider a sample decision tree for the Titanic survival prediction problem depicted
in Figure 5-9.

283

CHAPTER 5 ' BUILDING, TUNING, AND DEPLOYING MODELS

E is sex male?

/N

is age > 9.5? k—/‘uwwed)
;, \ 0.73 36%
@ is sibsp > 2.57

0.17 61%

@ (. survived‘]

0.05 2% 0.89 2%

Figure 5-9. A sample decision tree model

The decision tree is easy to interpret by following the path with the values of an unknown data point.
The leaf node where you end up is the predicted class for the data point. The model parameters in this case
are the attributes on which we are splitting (here sex, age, and sibsp) and the values of those attributes.

For example if a person was female, it is likely she had survived based on this model. However, infant males
having age less than 9 years and 6 months are likely to have perished.

In the algorithm, the decision whether we will continue splitting the dataset at a node further or stop
the splitting process is governed by one of the hyperparameters of the algorithm named min_samples_leaf.
This is a hyperparameter associated with the decision tree algorithm. The default value of this parameter is
1, which means that we can potentially keep splitting the data until we have a leaf node with a single data
point (with a unique class label). This leads to a lot of overfitting as potentially each data point can end up in
its own leaf node and the model will not learn anything useful. Suppose we want to stop the splitting process
if we have 3-4% of the whole dataset in a leaf node and label that node with the majority class of that node.
This can be achieved by setting a different value for the specified hyperparameter. This allows us to control
the overfitting and help us develop a generalized model. This is just one of the hyperparameters associated
with the algorithm; there are many more like the splitting criterion (criterion), maximum depth of the tree
(max_depth), number of features (max_features), and so on, which can have different effects on the quality
of the overall model.

Similar hyperparameters exist for each learning algorithm. Examples include the learning rate in
logistic regression, the kernel in SVMs, and the dropout rate in neural networks. Hyperparameters are
generally closely related to the learning algorithm. Hence we require some understanding of the algorithm
to have intuition about setting the value of a particular hyperparameter. In the later sections of this chapter
and the book, we deal with datasets and models that will require some level of hyperparameter tuning.

The Bias-Variance Tradeoff

So far, we learned about the necessary concepts which talk about tuning our models. But before go into the
process of putting it all together and actually tuning our models, we must understand a potential tradeoff
that puts some restriction on the best model that we can develop. This tradeoff is called the bias versus
variance tradeoff. The obvious question that arises is what are bias and variance in the context of Machine
Learning models?

284

CHAPTER 5 " BUILDING, TUNING, AND DEPLOYING MODELS

e Bias: This is the error that arises due to the model (learning algorithm) making
wrong assumptions on the parameters in the underlying data. The bias error is the
difference between the expected or predicted value of the model estimator and
the true or actual value which we are trying to predict. If you remember, model
building is an iterative process. If you imagine building a model multiple times over
a dataset every time you get some new observations, due to the underlying noise and
randomness in the data, predictions will not always be what is expected and bias
tries to measure the difference\error in actual and predicted values. It can also be
specified as the average approximation error that the models have over all possible
training datasets. The last part here, all possible training datasets, needs some
explanation. The dataset that we observe and develop our models on is one of the
possible combinations of data that exist. All the possible combinations of each of the
attributes\features that we have in our data will give rise to a different dataset. For
example, consider if we have a dataset with 50 binary (categorical) features, then the
size of that entire dataset would be 2*° data points. The dataset that we model on will
obviously be a subset of this huge data. So bias is the average approximation error
that we can expect over subset of this entire dataset. Bias is mostly affected by our
assumptions (or the model’s assumptions) about the underlying data and patterns.
For example, consider a simple linear regression model; it makes the assumption
that the dependent variable is linearly dependent on the independent variable.
Whereas consider the case of a decision tree model it makes no such assumption
about the structure of the data and purely learns patterns from the data. Hence, in
relative sense, a linear model may tend to have a higher bias than a decision tree
model. High bias makes a model miss relevant relationships between features and
the output variables in data.

e Variance: This error arises due to model sensitivity to fluctuations in the dataset that
can arise due to new data points, features, randomness, noise, and so on. It is the
variance of our approximation function over all possible datasets. It represents the
sensitivity of the model prediction results on particular set of data points. Suppose
you could have learned the model on different subset of all possible datasets then
variance would quantify how the results of the model change with the change in
the dataset. If the results stay quite stable then the model would be said to having
alow variance but if the results vary considerably each time then the model would
said to be having a high variance. Consider the same example of contrasting a
linear model against a decision tree model, under the assumption that a clear linear
relationship exists between the dependent and the independent data variables. Then
for a sufficiently large dataset our linear model will always capture that relationship.
Whereas the capability of a decision tree model depends on the dataset, if we get
a dataset which consists of a lot of outliers, we are likely to get a bad decision tree
model. Hence we can make a statement that the decision tree model will be having
a higher variance than a linear regression model based on data and the underlying
noise\randomness. High variance makes a model too sensitive to outliers or random
noise instead of generalizing well.

An effective way to get a clearer idea at this somewhat confusing concept is through a visual
representation of bias and variance, as depicted in Figure 5-10.

285

CHAPTER 5 " BUILDING, TUNING, AND DEPLOYING MODELS

Low Variance High Variance

Low Bias

High Bias

Figure 5-10. The Bias-variance tradeoff

In Figure 5-10, the inner red circle represents the perfect model that we can have considering all the
combinations of the data that we can get. Each blue dot (-) marks a model that we have learned on the basis
of combinations of the dataset and features that we get.

e Models with low bias, low variance, represented by the top left image, will learn a
good general structure of underlying data patterns and relationships that will be
close to the hypothetical model and predictions will be consistent and hit the
bull’s eye!

e Models with low bias, high variance, represented by the top right image, are models
that generalize to some extent (learn proper relationships\patterns) and perform
decently on average due to low bias but are sensitive to the data it is trained on
leading to high variance and hence predictions keep fluctuating.

e Models with high bias, low variance will tend to make consistent predictions
irrespective of datasets on which the models are built leading to low variance but
due to high bias, it will not learn the necessary patterns\relationships in the data that
are required for correct predictions and hence misses the mark due to the high bias
error on average, as depicted in the bottom-left image.

286

CHAPTER 5 " BUILDING, TUNING, AND DEPLOYING MODELS

e Models with high bias, high variance are the worst sort of models possible, as they
will not learn necessary data attribute relationships that are essential to correlation
with output responses. Also they will be extremely sensitive to data and outliers
and noise leading to highly fluctuating predictions which result in high variance, as
depicted in the bottom-right image.

Extreme Cases of Bias-Variance

In real-world modeling, we will always have a tradeoff between decreasing bias and variance
simultaneously. To understand why we have this tradeoff, we must first consider the two possible extreme
cases of bias and variance.

Underfitting

Consider a linear model that is lazy and always predicts a constant value. This model will have extremely
low variance (in fact it will be a zero variance model) as the model is not dependent at all on which subset of
data it gets. It will always predict a constant and hence have stable performance. But on the other hand it will
have extremely high bias as it has not learned anything from the data and made a very rigid and erroneous
assumption about the data. This is the case of model underfitting, in which we fail to learn anything about
the data, its underlying patterns, and relationships.

Overfitting

Consider the opposite case in which we have model that attempts to fit every data point it encounters (the
closest example would be fitting an n™ order polynomial curve for an n-observation dataset so that the curve
passes through each point). In this case, we will get a model which will have low bias as no assumption to
structure of data was made (even when there was some structure) but the variance will be very high as we
have tightly fit the model to one of the possible subsets of data (focusing too much on the training data). Any
subset different from the training set will lead to a lot of error. This is the case of overfitting, where we have
built our model so specific to the data at hand that it fails to do any generalization over other subsets of data.

The Tradeoff

The total generalization error of any model will be a sum of its bias error, variance error, and irreducible
error, as depicted in the following equation.

Generalization Error = Bias Error + Variance Error + Irreducible Error

Such that the irreducible error is the error that gets introduced due to noise in the training data itself,
something that is common in real-world datasets and not much can be done about it. The idea is to focus
on the other two errors. Every model needs to do a tradeoff between the two choices: making assumptions
about the structure of data or fitting itself too closely to the data at hand. Either choice in entirety will lead to
one of the extreme cases. The idea is to focus on balancing model complexity by doing an optimal tradeoff
between bias and variance, as depicted in Figure 5-11.

287

CHAPTER 5 ' BUILDING, TUNING, AND DEPLOYING MODELS

High Bias Low Bias
Low Variance High Variance
- sseses eessess -

Test Sample

Prediction Error

/

Training Sample

Low High

Model Complexity

Figure 5-11. Test and train errors as a function of model complexity (Source: The Elements of Statistical
Learning, Tibshirani et al. Springer)

Figure 5-11 should give you more clarity on the tradeoff that needs to be done to prevent an increase
in model errors. We will need to make some assumptions about the underlying structure in the data but
they must be reasonable. At the same time, the model must ensure that it learns from the data at hand
and generalizes well instead of overfitting to each and every data point. This tradeoff can be controlled by
making sure that our model is not a very complex model and by ensuring reasonable performance on the
unseen validation data. We will cover more on cross validation in the next section. We recommend you to
check out the section on model selection and the book Bias-Variance Tradeoff in the Elements of Statistical
Learning, Tibshirani et al., Springer.

Cross Validation

In the initial sections of this chapter when we were learning to fit different models, we followed the practice
of partitioning the data into a training set and a test set. We built the model on the training set and reported
its performance on the test set. Although that way of building models works, when working on tuning
models intensively, we need to consider some other strategies around validation datasets. In this section
we will discuss how we can use the same data to build different models and also tune their hyperparameters
using a simple data partitioning strategy. This strategy is one of the most prevalent practices in Data Science
domain irrespective of the type of models and it is called cross validation or just CV. This is extremely useful
when you also have less data observations and cannot segregate a specific partition of data for being a
validation set (more on this shortly!). You can then leverage a cross-validation strategy to leverage parts of
the training data itself for validation in such a way that you don’t end up overfitting the model.

The main intention of any model building activity is to develop a generalized model on the available
data which will perform well on the unseen data. But to estimate a model’s performance on unseen data,
we need to simulate that unseen data using the data that we have available. This is achieved by splitting
our available data into training and testing sets. By following this simple principle we ensure that we don’t
evaluate the model on the data that it has already seen and been trained on. The story would be over
here if we were completely satisfied with the model that we developed. But the initial models are seldom
satisfactory enough for deployment.

288

CHAPTER 5 " BUILDING, TUNING, AND DEPLOYING MODELS

In theory, we can extend the same principles for tuning our algorithm. We can evaluate the
performance of particular values of the model hyperparameters on the test set. Retrain the model with a
different partition of training and test set with a different values of hyperparameters. If the new parameters
perform better than the old ones we take them and keep repeating the same process until we have the
optimal values of the hyperparameters. This scheme of things is simple but it suffers from a serious flaw. It
induces a bias in the model development process. Although the test set is changed in every iteration, the
data is being seen by the model to make some choices about the model development process (as we tune
and build the model). Hence, the models that we develop end up being biased and not well-generalized and
their performance may or may not reflect their performance on unseen data.

A simple change in the data splitting process can help us avoid this leakage of unseen data. Suppose
we initially made three different subsets of data instead of the original two. One is the usual training set, the
second one is the test set and the last one is called a validation set. So we can train our models on the train
data evaluate their performance on the validation data to tune model parameters (or even to select among
different models). Once we are done with the tuning process, we can evaluate the final model on the really
unseen test set and report the performance on the test set as the approximate performance of the model on
the real-world unseen data. In the very essence of things this is the basic principle behind the process of
cross validation, as depicted in Figure 5-12.

Train’ set . H _l| l

Validation |
set

v v v v
Test set Ey E; E3 E,

|Pick model with least error

Estimated
- - Error
Of final model

Figure 5-12. Building toward the cross-validation process for model building and tuning

Figure 5-12 gives us an idea of how the whole process works. We divide the original dataset into a train
and test set. The test set is completely set aside from the learning process. The train set so obtained is again
splitinto an actual train set and a validation set. Then we learn different models on the train set. A point
worth noting here is that the models are general, i.e. all of them can be of single type for example logistic
regression but with different hyperparameters. They can also be models using other algorithms like tree
based methods, support vector machines, and so on. The process of model selection is similar irrespective of
whether we are assessing completely different models or whether we are trying out different hyperparameter
values of the same type of models. Once we have the models developed, we assess their performance on the
validation set and select the model with the best performance as the final model. We leverage model evaluation
metrics for this based on the type of model (accuracy, f1 Score, rmse, silhouette coefficient, and so on).

289

CHAPTER 5 ' BUILDING, TUNING, AND DEPLOYING MODELS

The previously described process seems to be good. We have described the validation part of the
process but we haven’t touched on the cross part of it. So where is the cross-validation? To understand
that intricacy of the CV process, we would have to discuss why we need this in the first place. The need for
it arises from the fact that by dividing the data into test and a validation set we have lost out on a decent
amount of data which we could have used to further refine our modeling process. Also another important
point is that if we take a model’s error for a single iteration to be its overall error we are making a serious
mistake. Instead we want to take some average measure of error by building multiple iterations of the same
model. But if we keep rebuilding the model on the same dataset, we are not going to get much difference in
the model performance. We address these two issues by introducing the cross concept of cross-validation.

The idea of cross validation is to get different splits of train and validation sets (different observations in
each set, each time) using some strategy (which we will elaborate on later) and then build multiple iterations
of each model on these different splits. The average error on these splits is then reported as the error of the
model in question and the final decision is made on this averaged error metric. This strategy has a brilliant
effect on the estimated error of each model, as it ensures that the averaged error is a close approximation of
the model’s error on really unseen data (here our test set) and we could also leverage the complete training
dataset for building the model. This process is explained pictorially in Figure 5-13.

Train', Train’y
set set
~ o
Train " Train E
aee
‘ Sl ‘ E 1 et n
- _ - v
£ -
Valid'y
set
|
Average
Error

En

Figure 5-13. The final cross-validation process for model building and tuning

The various strategies in which these different train and validation sets can be generated gives rise
to different kind of cross-validation strategies. The common idea in each of these strategies remains the
same. The only difference is in the way the original train set is split into a train and validation set for each
iteration of model building.

Cross-Validation Strategies

We explained the basic principle of cross validation in the previous section. In this section, we see the
different strategies in which we can split the training data into training and validation data. Apart from the
way of this split, as mentioned before, the process for each of these strategies remains the same. The major
types of cross-validation strategies are described as follows.

290

CHAPTER 5 " BUILDING, TUNING, AND DEPLOYING MODELS

Leave One Out CV

In this strategy for cross validation, we select a random single data point from the initial training dataset
and that becomes our validation set. So we have a single point only in our validation set and the rest n—1
observations become our training set. This means that if have 1000 data points in a training set than we

will be developing 1000 iterations of each model with a different training set and validation set each time
such that the validation set has one observation and the rest (999) go into the training set. This may become
infeasible if the dataset size is large. But in practice the error can be estimated by performing some small
number of iterations. Due to the computational complexity of this measure, it is mostly suitable for small
datasets and rarely used in practice.

K-Fold CV

The other strategy for cross-validation is to split the training dataset into k equal subsets. Out of these k
subsets we train the model on k-1 subsets and keep one subset as a validation set. This process is repeated k
times and the error is averaged over the k models that are obtained by developing different iterations of the
model. We keep changing the validation set in each of these iterations which ensures that in each iteration,
the model is trained on a different subset of data. This practice of cross-validation is quite effective in
practice, both for model selection and hyperparameter optimization.

A natural question for this strategy is to select the appropriate number of folds, as they will both control
our error approximation and the computational runtime of our CV process. There are mathematical ways to
select the most appropriate k but in practice a good choice of k ranges from 5-10. So, in most cases, we can
do a 5-fold or 10-fold validation and be confident of the results that we obtained.

Hyperparameter Tuning Strategies

Based on our discussions until now, we have all the prerequisites for tuning our model. We know what
hyperparameters are, how the performance of a model can be evaluated, and how we can use cross-
validation to search through the parameter space for optimal value of our algorithm’s hyperparameters.
In this section, we discuss two major strategies that tie all this together to determine the most optimal
hyperparameters. Fortunately, the scikit-learn library has an excellent built-in support for performing
hyperparameter search with cross-validation.

There are two major ways in which we can search our parameter space for an optimal model. These two
methods differ in the way we will search for them: systemic versus random. In this section we will discuss
these two methods along with hands-on examples. The takeaway from this section is to understand the
processes so that you can start leveraging on your own datasets. Also note that even if we don’t mention it
explicitly, we will always be using cross validation to perform any of these searches.

Grid Search

This is the simplest of the hyperparameter optimization methods. In this method we will specify the grid of
values (of hyperparameters) that we want to try out and optimize to get the best parameter combinations.
Then we will build models on each of those values (combination of multiple parameter values), using
cross-validation of course, and report the best parameters’ combination in the whole grid. The output will be
the model using the best combination from the grid. Although it is quite simple, it suffers from one serious
drawback that the user has to manually supply the actual parameters, which may or may not contain the
most optimal parameters.

291

CHAPTER 5 ' BUILDING, TUNING, AND DEPLOYING MODELS

In scikit-learn, grid search can be done using the GridSearchCV class. We go through an example
by performing grid search on a support vector machine (SVM) model on the breast cancer dataset from
earlier. The SVM model is another example of a supervised Machine Learning algorithm that can be used for
classification. It is an example of a maximum margin classifier, where it tries to learn a representation of all
the data points such that separate categories\labels are divided or separated by a clear gap, which is as large
as possible. We won’t be going into further extensive details here since the intent is to run grid search, but we
recommend you to check out some standard literation on SVMs if you are interested.

Let’s first split our breast cancer dataset variables X and y into train and test datasets and build an
SVM model with default parameters. Then we’ll evaluate its performance on the test dataset by leveraging
our model evaluation utils module.

from sklearn.model selection import train_test split
from sklearn.svm import SVC

prepare datasets
X _train, X test, y train, y test = train test split(X, y, test size=0.3, random state=42)

build default SVM model
def_svc = SVC(random_state=42)
def svc.fit(X train, y train)

predict and evaluate performance

def_ y pred = def svc.predict(X test)

print('Default Model Stats:')

meu.display model performance metrics(true labels=y test, predicted labels=def y pred,
classes=[0,1])

Model Performance metrics: Model Classification report: Prediction Confusion Matrix:

Accuracy: ©.6316 precision recall fl-score support Predicted:

Precision: 0.3989 e 1

Recall: ©.6316 @ .00 e.e0 e.00 63 Actual: @ e 63

F1 Score: 0.489 1 @.63 l1.e0 e.77 108 1 e 1les
avg / total e.40 .63 0.49 171

Figure 5-14. Model performance metrics for default SVM model on the breast cancer dataset

Would you look at that, our model gives an overall F1 Score of only 49% and model accuracy of 63%
as depicted in Figure 5-14. Also by looking at the confusion matrix, you can clearly see that it is predicting
every data point as benign (label 1). Basically our model learned nothing! Let’s try tuning this model to see
if we get something better. Since we have chosen a SVM model, we specify some hyperparameters specific
to it, which includes the parameter C (deals with the margin parameter in SVM), the kernel function (used
for transforming data into a higher dimensional feature space) and gamma (determines the influence a
single training data point has). There are a lot of other hyperparameters to tune, which you can check out
athttp://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html for further details.
We build a grid by supplying some pre-set values. The next choice is selecting the score or metric we want
to maximize here we have chosen to maximize accuracy of the model. Once that is done, we will be using
five-fold cross-validation to build multiple models over this grid and evaluate them to get the best model.
Detailed code and outputs are depicted as follows.

from sklearn.model selection import GridSearchCV

setting the parameter grid

292

http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

CHAPTER 5 " BUILDING, TUNING, AND DEPLOYING MODELS

grid parameters = {'kernel': ['linear', 'rbf'],
‘gamma': [1le-3, le-4],
'C': [1, 10, 50, 100]}

perform hyperparameter tuning

print("# Tuning hyper-parameters for accuracy\n")

clf = GridSearchCV(SVC(random_state=42), grid parameters, cv=5, scoring="accuracy"')

clf.fit(X _train, y train)

view accuracy scores for all the models

print("Grid scores for all the models based on CV:\n")

means = clf.cv_results ['mean_test score']

stds = clf.cv_results ['std test score']

for mean, std, params in zip(means, stds, clf.cv_results ['params']):
print("%0.5f (+/-%0.05f) for %r" % (mean, std * 2, params))

check out best model performance

print("\nBest parameters set found on development set:", clf.best params)

print("Best model validation accuracy:", clf.best score)

Tuning hyper-parameters for accuracy
Grid scores for all the models based on CV:

.95226 (+/-0.06310) for {'C': 1, 'gamma': 0.001, 'kernel': 'linear'}
.91206 (+/-0.04540) for {'C': 1, 'gamma': 0.001, 'kernel': 'rbf'}
.95226 (+/-0.06310) for {'C': 1, 'gamma': 0.0001, 'kernel': 'linear'}
.92462 (+/-0.02338) for {'C': 1, 'gamma': 0.0001, 'kernel': 'rbf'}
.96231 (+/-0.04297) for {'C': 10, 'gamma': 0.001, 'kernel': 'linear'}
.90201 (+/-0.04734) for {'C': 10, 'gamma': 0.001, ‘kernel': 'rbf'}
.96231 (+/-0.04297) for {'C': 10, 'gamma': 0.0001, 'kernel': 'linear'}
.92965 (+/-0.03425) for {'C': 10, 'gamma': 0.0001, 'kernel': 'rbf'}
.95729 (+/-0.05989) for {'C': 50, 'gamma': 0.001, 'kernel': 'linear'}
.90201 (+/-0.04734) for {'C': 50, 'gamma': 0.001, 'kernel': 'rbf'}
.95729 (+/-0.05989) for {'C': 50, 'gamma': 0.0001, 'kernel': 'linear'}
.93467 (+/-0.02975) for {'C': 50, 'gamma': 0.0001, 'kernel': 'rbf'}
.95477 (+/-0.05772) for {'C': 100, 'gamma': 0.001, 'kernel': 'linear'}
.90201 (+/-0.04734) for {'C': 100, 'gamma': 0.001, 'kernel': 'rbf'}
.95477 (+/-0.05772) for {'C': 100, 'gamma': 0.0001, 'kernel': 'linear'}
.93216 (+/-0.04674) for {'C': 100, 'gamma': 0.0001, 'kernel': 'rbf'}

O OO0 0000000000 OoOOoOOo
O O O O OO oo

Best parameters set found on development set: {'C': 10, 'gamma': 0.001, 'kernel': 'linear'}
Best model validation accuracy: 0.962311557789

Thus, from the preceding output and code, you can see how the best model parameters were obtained
based on cross-validation accuracy and we get a pretty awesome validation accuracy of 96%. Let’s take this
optimized and tuned model and put it to the test on our test data!

gs_best = clf.best_estimator_
tuned_y pred = gs best.predict(X_test)

print('\n\nTuned Model Stats:')
meu.display model performance metrics(true labels=y test, predicted labels=tuned y pred,
classes=[0,1])

293

CHAPTER 5 ' BUILDING, TUNING, AND DEPLOYING MODELS

Model Performance metrics: Model Classification report: Prediction Confusion Matrix:

Accuracy: 0.9708 precision recall fil-score support Predicted:

Precision: @.97@9 -] 1

Recall: @.97e8 2] 2.95 0.97 9.96 63 Actual: @ 61 2

Fl Score: 0.9708 1 .98 2.97 0.98 les 1 3 185
avg / total 0.97 .97 0.97 171

Figure 5-15. Model performance metrics for tuned SVM model on the breast cancer dataset

Well things are certainly looking great now! Our model gives an overall F1 Score and model
accuracy of 97% on the test dataset too, as depicted in Figure 5-14. This should give you a clear indication of
the power of hyperparameter tuning! This scheme of things can be extended for different models and their
respective hyperparameters. We can also play around with the evaluation measure we want to optimize.
The scikit-1learn framework provides us with different values that we can optimize. Some of them are
adjusted_rand_score, average_precision, 1, average recall, and so on.

Randomized Search

Grid search is a very popular method to optimizing hyperparameters in practice. It is due to its simplicity
and the fact that it is embarrassingly parallelizable. This becomes important when the dataset we are
dealing with is of a large size. But it suffers from some major shortcomings, the most important one being
the limitation of manually specifying the grid. This brings a human element into a process that could benefit
from a purely automatic mechanism.

Randomized parameter search is a modification to the traditional grid search. It takes input for
grid elements as in normal grid search but it can also take distributions as input. For example consider
the parameter gamma whose values we supplied explicitly in the last section instead we can supply a
distribution from which to sample gamma. The efficacy of randomized parameter search is based on the
proven (empirically and mathematically) result that the hyperparameter optimization functions normally
have low dimensionality and the effect of certain parameters are more than others. We control the number
of times we want to do the random parameter sampling by specifying the number of iterations we want to
run (n_iter). Normally a higher number of iterations mean a more granular parameter search but higher
computation time.

To illustrate the use of randomized parameter search, we will use the example we used earlier but
replace the gamma and C values with a distribution. The results in our example may not be very different
from the grid search, but we establish the process that can be followed for future reference.

import scipy
from sklearn.model selection import RandomizedSearchCV

param grid = {'C': scipy.stats.expon(scale=10),
‘gamma’': scipy.stats.expon(scale=.1),
'kernel': ['rbf', 'linear']}
random_search = RandomizedSearchCV(SVC(random state=42), param_distributions=param grid,
n_iter=50, cv=5)
random_search.fit(X_train, y_train)
print("Best parameters set found on development set:")
random_search.best params_

Best parameters set found on development set:

Out[183]:
{'C': 12.020578954763398, 'gamma': 0.036384519279056469, 'kernel': 'linear'}

294

CHAPTER 5 " BUILDING, TUNING, AND DEPLOYING MODELS

get best model, predict and evaluate performance

rs_best = random search.best estimator_

rs_y pred = rs_best.predict(X test)

meu.get metrics(true labels=y test, predicted labels=rs y pred)

Accuracy: 0.9649
Precision: 0.9649
Recall: 0.9649

F1 Score: 0.9649

In this example, we are getting the values of parameter C and gamma from an exponential distribution
and we are controlling the number of iterations of model search by the parameter n_iter. While the overall
model performance is similar to grid search, the intent is to be aware of the different strategies in model tuning.

Model Interpretation

The objective of Data Science or Machine Learning is to solve real-world problems, automate complex tasks,
and make our life easier and better. While data scientists spend a huge amount of time building, tuning,
and deploying models, one must ask the questions, “What is this going to be used for?” and “How does this
really work?” and the most important question, “Why should I trust your model?”. A business or organization
will be more concerned about business objective, generating profits, and minimizing losses by leveraging
analytics and Machine Learning. Hence often there is a disconnect between analytics teams and key
stakeholders, customers, clients, or management in trying to explain how models really work. Most of the
time, explaining complex theoretical and mathematical concepts can be really difficult to non-experts who
may not have an idea or, worse, might not be interested in knowing all the gory details. This brings us back to
the main objective, “can we explain and interpret Machine Learning models in an easy to understand way’,
such that anyone even without thorough knowledge of Machine Learning can understand them. The benefit
of this would be two-fold—Machine Learning models will not just stop at being research projects or proof-
of-concepts and it will pave the way for higher adoption of Machine Learning based solutions in enterprises.

Some Machine Learning models use interpretable algorithms, for example a decision tree will give you
the importance of all the variables as an output. Also the prediction path of any new data point can be analyzed
using a decision tree hence we can learn what variable played a crucial role for a prediction. Unfortunately, this
can’t be said for a lot of models, especially for the ones who have no notion of variable importance.

Some Machine Learning Models are interpretable in nature by default - e.g. generative model such
as Bayesian Rule List, Letham et. al (https://arxiv.org/abs/1511.01644), while other simple black box
models such as Simple Decision Trees could be made interpretable by using the feature importance as
an output. Also, the prediction path for a single tree from the root of the tree to its leaves can be visualized
capturing the contribution of the feature to the estimators decision policies. But, this intuitiveness may not
be possible for complex non-linear models - Random Forest, Deep Neural Networks - Convolutional Neural
Networks (CNNs), Recurrent Neural Networks (RNNS). The lack of understanding of the complex nature
of Machine Learned decision policies makes predictive models to be still viewed as black boxes. Model
interpretations can help a data scientist and an end user in a variety of ways. It will help bridge the gap that
often exists between the technology teams and the business. For example, it can help identify the reason
why a particular prediction is being made and it can be verified using the domain knowledge of the end
user by leveraging that easy to understand interpretation. It can also help the data scientists understand the
interactions among features that can lead to better feature engineering and enhanced performance. It can
also help in model comparisons and explaining the results better to the business stakeholders.

295

https://arxiv.org/abs/1511.01644

CHAPTER 5 ' BUILDING, TUNING, AND DEPLOYING MODELS

While the simplest approach to having models that are interpretable is to use algorithms that lead to
interpretable models like decision trees, logistic regression and others. But we don’t have the guarantee that
an interpretable model will provide us with the best performance. Hence we cannot always resort to such
models. A recent, much better approach is to explain model predictions in an easy-to-interpret manner
by learning an interpretable model locally around the prediction. This topic in fact has gained extensive
attention very recently in 2016. Refer to the original research paper by M.T. Ribeiro, S. Singh & C. Guestrin
titled “Why Should I Trust You?”: Explaining the Predictions of Any Classifier from https://arxiv.org/
pdf/1602.04938.pdf to understand more about model interpretation and the LIME framework, which
proposes to solve this. The LIME framework attempts to successfully explain any black box model locally
(somewhere we need define the scope of Interpretation - Globally and Locally) and you can check out the
GitHub repository at https://github.com/marcotcr/lime.

We will be leveraging another library named Skater, an open sourced Python library designed to
demystify the inner workings of of predictive models. Skater defines the scope of interpretating models
1.Globally(on the basis of a complete dataset) and 2. Locally (on the basis of an individual prediction). For
global explanations, Skater makes use of model-agnostic variable importance and partial dependence plots
to judge the bias of a model and understand its general behavior. To validate a model’s decision policies
for a single prediction, on the other hand, the library currently embraces a novel technique called local
interpretable model agnostic explanation (LIME, Ribeiro et al., 2016), which uses local surrogate models to
assess performance. The library is authored by Aaron Kramer, Pramit Choudhary, and the DataScience.com
team, Skater is now a mainstream project and an excellent framework for model interpretation. We would
like to acknowledge and thank the folks at DataScience.com—Ian Swanson, Pramit Choudhary, and Aaron
Kramer—for developing this amazing framework and especially Pramit for taking out time to explain to us in
detail the features and vision for the Skater project. Some advantages of leveraging Skater are mentioned as
follows and some of them are still actively being worked on and improved.

e Production ready code using functional style programming (declarative
programming paradigm)

e Enable Interpretation for both classification and regression based models for
Supervised Learning problems to start with and then gradually extend it to
support interpretation for Unsupervised Learning problems as well. This includes
computationally efficient Partial Dependence Plots and model independent feature
importance plots.

e Workflow abstraction: Common interface to perform local interpretation for
In-Memory (Model is under development) as well as Deployed Model (Model has
been deployed in production)

e Extending LIME - added support for interpreting Regression based model, better
sampling distribution for generating samples around a local prediction, researching
the ability to include non-linear models for local evaluation

e Enabling support of Rule Based interpretable Models - e.g. Letham et. al
(https://arxiv.org/abs/1511.01644)

e Better support for model Evaluation for NLP based models - e.g. Bach et. al
Layerwise Relevance Propagation (http://journals.plos.org/plosone/
article?id=10.1371/journal.pone.0130140)

e Better support for Image Interpretability - Batra et. al. Gradient weighted Class
Activation Map (https://arxiv.org/abs/1610.02391)

296

https://arxiv.org/pdf/1602.04938.pdf
https://arxiv.org/pdf/1602.04938.pdf
https://github.com/marcotcr/lime
https://arxiv.org/abs/1511.01644
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0130140
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0130140
https://arxiv.org/abs/1610.02391

CHAPTER 5 " BUILDING, TUNING, AND DEPLOYING MODELS

Besides this, since, the time this project started, they have committed some improvements, namely
support for regression back into the original LIME repository and they still have other aspects of
interpretation in their roadmap and further improvements to LIME in the future. You can easily install
skater by running the pip install -U Skater command from your prompt or terminal. For more
information, you can check out the GitHub repository at https://github.com/datascienceinc/Skater or
join the chat group here: https://gitter.im/datascienceinc-skater/Lobby.

Understanding Skater

Skater is an open source Python framework that aims to provide model agnostic interpretation of predictive
models. It is an active project on GitHub at https://github.com/datascienceinc/Skater with many of

the previously mentioned features being worked upon actively. The idea of skater is to understand black
box Machine Learning models by querying them and interpreting their learned decision policies. The
philosophy of skater is that all models should be evaluated as black boxes and decision criteria of the
models are inferred and interpreted based on input perturbations and observing the corresponding output
predictions. The scope of model interpretation by leveraging skater, enables us to do both global and local
interpretation as depicted in Figure 5-16.

Global Interpretation Local Interpretation

Being able to explain the conditional interaction
between dependent(response) variables and
independent(predictor, or explanatory) variables
based on the complete dataset

Being able to explain the conditional
interaction between dependent(response)
variables and independent(predictor, or
explanatory) variables wrt to a single

prediction
A

Figure 5-16. Scope of Model Interpretation (source: DataScience.com)

Using the skater library, we can explore the features’ importance, partial dependency plots upon
features, and global and local fidelity of the predictions made by the model. The fidelity of a model can be
described as the reasons on the basis of which the model calculated and predicted a particular class. For
example, suppose we have a model that predicts whether a particular user transaction can be tagged as a
fraudulent transaction or not. The output of the model will be much more trustworthy if we can identify,
interpret, and depict that the reason the model marked the prediction as fraud, is because the amount is
larger than the maximum transaction of the user in the last six months and the location of transaction is
1000 kms away from user’s normal transaction areas. Contrast it with the case where we are only given a
prediction label without any justifying explanation.

297

https://github.com/datascienceinc/Skater
https://gitter.im/datascienceinc-skater/Lobby
https://github.com/datascienceinc/Skater
www.DataScience.com

CHAPTER 5 ' BUILDING, TUNING, AND DEPLOYING MODELS

The general workflow within the skater package is to create an interpretation object, create a model
object, and run interpretation algorithms. Also, an Interpretation object takes as input, a dataset, and
optionally some metadata like feature names and row identifiers. Internally, the Interpretation object
will generate a DataManager to handle data requests and sampling. While we can interpret any model by
leveraging the model estimator objects, for ensuring consistency and proper functionality across all of
skater's interfaces, model objects need to be wrapped in skater's Model object, which can either be an
InMemoryModel object over an actual model or even a DeployedModel object to take a model behind an API
or web service. Figure 5-17 depicts a standard machine learning workflow and how skater can be leveraged
for interpreting the two different types of models we just mentioned. Let’s use our logistic regression model
from earlier to do some model interpretation on our breast cancer dataset!

Muodel Interpretation: In-Memory Models Model Interpretation: Deployed Models

R g -y 7
L] L] ' L]
Define Handle Data Engineer and Build Model Deploy Model Test and Monitor
Hypothesis Select Model
Features aratic

Improve existing hypothesis/Generate a new one

Figure 5-17. Model Interpretation in a standard Machine Learning Workflow (source: DataScience.com)

Model Interpretation in Action

We will be using our train and test datasets from the breast cancer dataset that we have been using in this
chapter for consistency. We will leverage the X_train and X_test variables and also the logistic model
object (logistic regression model) that we created previously. We will try to run some model interpretations
on this model object. The standard workflow for model interpretation is to create a skater interpretation
and model object.

from skater.core.explanations import Interpretation
from skater.model import InMemoryModel

interpreter = Interpretation(X test, feature names=data.feature names)
model = InMemoryModel(logistic.predict proba, examples=X train, target names=logistic.classes)

298

www.DataScience.com

CHAPTER 5 " BUILDING, TUNING, AND DEPLOYING MODELS

Once this is complete, we are ready to run model interpretation algorithms. We will start by trying to
generate feature importances. This will give us an idea of the degree to which our predictive model relies on
particular features. The skater framework’s feature importance implementation is based on an information
theory criterion, where it measures the entropy in the change of predictions, given a perturbation of a
specific feature. The idea is that the more a model’s decision making criteria depends on a feature, the more
the predictions will change as a function of perturbing the feature.

plots = interpreter.feature importance.plot feature importance(model, ascending=False)

VIOTSE Grea [—————————
mean pernmeter

8
5-1
oS0
=]
v
i)
i
caC
BA%
-hiiilill

WOTSE S mmeéi
worst concave

mpactness -

mean conca /& poInts 1

ra
WOIS[smoo I“l?SS]
mea e .

mean sz tFPnes 1
£Qaravity erfor 1

worst fracta nsion 4
com act €35 STTOT

metry error

meaanracfi |mene5rrg:]
fractairglrnens:on error 1 . ’ . - -

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Figure 5-18. Feature importances obtained from our logistic regression model

We can clearly observe from Figure 5-18 that the most important feature in our model is worst
area, followed by mean perimeter and area error. Let’s now consider the most important feature,
worst area, and think about ways it might influence the model decision making process during
predictions. Partial dependence plots are an excellent tool to leverage to visualize this. In general,
partial dependence plots help describe the marginal impact of a specific feature on model prediction
by holding the other features in the model constant. The derivative of partial dependence, describes
the impact of a feature. The following code helps build the partial dependence plot for the worst area
feature in our model.

p = interpreter.partial dependence.plot partial dependence(['worst area'], model,

grid_resolution=50,
with variance=True, figsize = (6, 4))

299

CHAPTER 5 ' BUILDING, TUNING, AND DEPLOYING MODELS

10 -

0.8 1

0.6 1

0.4 -

0.2 -

0.0 -

400 600 800 1000 1200 1400 1600 1800 2000
worst area

Figure 5-19. One-way partial dependence plot for our logistic regression model predictor based on worst area

From the plot in Figure 5-19, we can see that the worst area feature has a strong influence on the
model decision making process. Based on the plot, if the worst area value decreases from 800, the model
is more prone to classify the data point as benign (label 1) which indicates no cancer. This is definitely
interesting! Let’s try to interpret some actual predictions now. We will predict two data points, one not
having cancer (label 1) and one having cancer (label 0), and try to interpret the prediction making process.

from skater.core.local interpretation.lime.lime_tabular import LimeTabularExplainer
exp = LimeTabularExplainer(X train, feature names=data.feature names,

discretize continuous=True, class names=['0', '1'])

explain prediction for data point having no cancer, i.e. label 1
exp.explain_instance(X test[0], logistic.predict proba).show_in notebook()

300

CHAPTER 5 " BUILDING, TUNING, AND DEPLOYING MODELS

Prediction probabilities 0 1 Feature Value
0 521 .aob\‘lc worst area <=... worst area 677.90
1 2 11.75 <mean radius <... mean radius 12.47

ol
75.81 < mean perimeter... mean perimeter 81.09
0.06)
84.54 < worst perimet... worst perimeter | 96.05
13.07 < worst radius < ME worst radius 14.97
e texture error 1.04
0.84 < texture error <=
.02 worst texture 24 64
21.07 < worst texture <... _
0.02 worst concavity 027
0.23 < worst concavity ...

0.02 mean area 48190

426.18 < mean area <=...

0.02 mean smoothness 0.10

0.09 < mean smoothnes...
0.02

Figure 5-20. Model interpretation for our logistic regression model’s prediction for a data point having no
cancer (benign)

The results depicted in Figure 5-20 show the features that were primarily responsible for the model
to predict the data point as label 1, i.e. having no cancer. We can also see the feature that was the most
influential in this decision was worst area! Let’s run a similar interpretation on a data point with malignant
cancer.

explain prediction for data point having malignant cancer, i.e. label 0
exp.explain _instance(X test[1], logistic.predict proba).show_in notebook()

Preifictanprobabitities 0 l Feature Value
worst area > 1061.25

worst area 1866.00
mean radius 18.94
worst radius 24 86

o I 1.00
1000]

area error 96.05
mean perimeter 123.60
worst perimeter 165.90
mean area 1130.00
texture error 0.80

compactness error 0.02

mean concavity 0.11

0.06 < mean concavity ...
0.02

Figure 5-21. Model interpretation for our logistic regression model’s prediction for a data point having cancer
(malignant)

301

CHAPTER 5 ' BUILDING, TUNING, AND DEPLOYING MODELS

The results depicted in Figure 5-21 once again show us the features that were primarily responsible
for the model to predict the data point as label 0, i.e. having malignant cancer. The feature worst area
was again the most influential one and you can notice the stark difference in its value as compared to the
previous data point. Hopefully this should give you some insight into how model interpretation works. A
point to remember here is that we are just getting started with model interpretation based on the recent
interest since 2016, but it is going to be a good and worthwhile journey toward making models easy to
understand for anyone!

Model Deployment

The tough part of the whole modeling process is mostly the iterative process of feature engineering, model
building, tuning, and evaluation. Once we are done with this iterative process of model development, we can
breathe a sigh of relief—but not for long! The final piece of the Machine Learning modeling puzzle is that of
deploying the model in production so that we actually start using it. In this section, you learn of the various
ways you can deploy your models in action and the necessary dependencies that must be taken care of in
this process.

Model Persistence

Model persistence is the simplest way of deploying a model. In this scheme of things we will persist our
final model on permanent media like our hard drive and use this persisted version for making predictions
in the future. This simple scheme is a good way to deploy models with minimal effort. Model development
is generally done on a static data source but once deployed, typically the model is used on a constant
stream of data either in realtime\near-realtime or in batches. For example, consider a bank fraud detection
model; at the time of model development, we will have data collected over some historical time span. We
will use this data for the model development process and come up with a model with good performance,
i.e. amodel that is very good at flagging potential fraud transactions. The model then needs to be deployed
over all of the future transactions that the bank (or any other financial entity) conducts. It means that for all
the transactions, we need to extract the data required for our model and feed that data to our model. The
model prediction is attached to the transaction and on the basis of it the transaction is flagged as a fraud
transaction or a clean transaction.

In the simplest scheme of things, we can write a standalone Python script that is given the new data as
soon as it arrives. It performs the necessary data transformations on the raw data and then reads our model
from the permanent data store. Once we have the data and the model we can make a prediction and this
prediction communication can be integrated with the required operations. These required operations are
often tied to the business needs of the model. In our case of tagging fraudulent transactions, it can involve
notifying the fraud department or simply denying the transaction. Most of the steps involved in this process
like data acquisition\retrieval, extraction, feature engineering and actions to be taken upon prediction are
related to the software or data engineering process and require custom software development and tinkering
with data engineering processes like ETL (extract-transform-load).

For persisting our model to disk, we can leverage libraries like pickle or joblib, which is also available
with scikit-learn. This allows us to deploy and use the model in the future, without having to retrain it
each time we want to use it.

from sklearn.externals import joblib
joblib.dump(logistic, 'lr model.pkl")

302

CHAPTER 5 " BUILDING, TUNING, AND DEPLOYING MODELS

This code will persist our model on the disk as a file named 1r_model.pkl. So whenever we will load
this object in memory again we will get the logistic regression model object.

1r = joblib.load('lr model.pkl")
1r

LogisticRegression(C=1.0, class weight=None, dual=False, fit intercept=True,
intercept scaling=1, max_iter=100, multi class='ovr', n_jobs=1,
penalty="12", random_state=None, solver='liblinear', tol=0.0001,
verbose=0, warm_start=False)

We can now use this 11 object, which is our model loaded from the disk, and make predictions.
A sample is depicted as follows.

print(lr.predict(X test[10:11]), y test[10:11])

[1] [1]

Remember that once you have a persisted model, you can easily integrate it with a Python based
script or application that can be scheduled to predict in realtime or batches of new data. However, proper
engineering of the solution is necessary to ensure the right data reaches the model and the prediction output
should also be broadcasted to the right channels.

Custom Development

Another option to deploy a model is by developing the implementation of model prediction method
separately. The output of most Machine Learning algorithms is just the values of parameters that were
learned. Once we have extracted these parameter values, the prediction process is pretty straightforward.
For example, the prediction of a logistic regression can be done by multiplying the coefficient vector with
the input data vector. This simple calculation will give us the score for the data vector that we can feed to the
sigmoid\logistic function and extract the prediction for our input data.

This method has more roots in the software development process as the developed model is reduced
to a set of configurations and parameters and the main focus would be on engineering the data and the
necessary mathematical computations using some programming language. This configuration can be used
to develop a custom implementation pipeline in which the prediction process is just a simple mathematical
operation.

In-House Model Deployment

Alot of enterprises and organizations will not want to expose their private and confidential data on which
models need to be built and deployed. Hence they will be leveraging their own software and Data Science
expertise to build and deploy custom solutions on their own infrastructure. This can involve leveraging
commercial-off-the-shelf tools to deploy models or using custom open source tools and frameworks.
Python based models can be easily integrated with frameworks like Flask or Django to create REST APIs or
Micro-services on top of the prediction models and these API endpoints can then be exposed and integrated
with any other solutions or applications that might need it.

303

CHAPTER 5 ' BUILDING, TUNING, AND DEPLOYING MODELS

Model Deployment as a Service

The computational world is seeing a surge of the cloud and the XAAS (anything as a service) model in all
areas. This is also true for model development and deployment. Major providers like Google, Microsoft, and
Amazon Web Services (AWS) provide the facility of developing Machine Learning models using their cloud
services and also the facility of deploying those models as a service on the cloud. This is very beneficial to
the end users due to the reliability and ease of scaling offered by these service providers. A major downside
to custom development or deploying models in-house is the extra work and maintenance required.

The scalability of the solution is also another problem that may exist for some kind of models like fraud
prediction, due to the sheer number of prediction volumes required.

Model deployment as a service takes care of these issues as in most cases the model prediction can be
accessed via a request made to a cloud based API endpoint (by supplying in the necessary data of course).
This capability frees the burden of maintaining an extra system for the developers of the application that
will be consuming the outputs of our model. In most cases, if the developers can take care of passing the
required data to the model deployment APIs, they don’t have to deal with the computational requirement of
the prediction system and dealing with its maintenance.

Another advantage of cloud deployment comes from how easy it is to update the models. Model
development is an iterative process and the deployed models need to be updated from time to time to
maintain their relevance. By maintaining the models at a single end point in the cloud, we simplify the
process of model updating as only a single replacement is required, which can actually happen with the
push of a button, which also syncs with all downstream applications.

Summary

This chapter concludes the second part of this book, which focused on the Machine Learning pipeline.

We learned the most important aspects of the model building process, which include model training, tuning,
evaluation, interpretation, and deployment. Details of various types of models was discussed in the model
building section including classification, regression, and clustering models. We also covered the three vital
stages of any Machine Learning process with an example of the logistic regression model and how gradient
descent is an important optimization process. Hands-on examples of classification and clustering model
building processes were depicted on real datasets. Various strategies of evaluating classification, regression,
and clustering models were also covered with detailed metrics for each of them, which were depicted with real
examples. A section of this book has been completely dedicated to tuning of models that include strategies for
hyperparameter tuning and cross validation with detailed depiction of tuning on real models. A nascent field
in Machine Learning is model interpretation, where we try to understand and explain how model predictions
really work. Detailed coverage on various aspects of model interpretation have also been covered, including
feature importances, partial dependence plots, and prediction explanations. Finally, we also looked at some
aspects pertaining to model deployment and the various options for deploying models. This should give you a
good idea of how to start building and tuning models. We will reinforce these concepts and methodologies in
the third part of this book where we will be working on real-world case studies.

304

PART il

Real-World Case Studies

CHAPTER 6

Analyzing Bike Sharing Trends -

“All work and no play” is a well-known proverb and we certainly do not want to be dull. So far, we have
covered the theoretical concepts, frameworks, workflows, and tools required to solve Data Science problems.
The use case driven theme begins with this chapter. In this section of the book, we cover a wide range of
Machine Learning/Data Science concepts through real life case studies. Through this and subsequent
chapters, we will discuss and apply concepts learned so far to solve some exciting real-world problems.

This chapter discusses regression based models to analyze data and predict outcomes. In particular,
we will utilize the Capital Bike Sharing dataset from the UCI Machine Learning Repository to understand
regression models to predict bike usage demand. Through this chapter, we cover the following topics:

e The Bike Sharing dataset to understand the dataset available from the UCI Machine
Learning Repository

e Problem statement to formally define the problem to be solved
e Exploratory data analysis to explore and understand the dataset at hand

e Regression analysis to understand regression modeling concepts and apply them to
solve the problem

The Bike Sharing Dataset

The CRISP-DM model introduced in the initial chapters talks about a typical workflow associated with
a Data Science problem/project. The workflow diagram has data at its center for a reason. Before we get
started on different techniques to understand and play with the data, let’s understand its origins.

The Bike Sharing dataset is available from the UCI Machine Learning Repository. It is one of the largest
and probably also the longest standing online repository of datasets used in all sorts of studies and research
from across the world. The dataset we will be utilizing is one such dataset from among hundreds available
on the web site.

The dataset was donated by University of Porto, Portugal in 2013. More information is available at
https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset.

Note We encourage you to check out the UCI Machine Learning Repository and particularly the Bike
Sharing Data Set page. We thank Fanaee et al. for their work and sharing the dataset through the UCI Machine
Learning Repository.

Fanaee-T, Hadi, and Gama, Joao, Event labeling combining ensemble detectors and background knowledge,
Progress in Artificial Intelligence (2013): pp. 1-15, Springer Berlin Heidelberg.

© Dipanjan Sarkar, Raghav Bali and Tushar Sharma 2018 307
D. Sarkar et al., Practical Machine Learning with Python, https://doi.org/10.1007/978-1-4842-3207-1_6

https://doi.org/10.1007/978-1-4842-3207-1_6
https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset

CHAPTER 6 " ANALYZING BIKE SHARING TRENDS

Problem Statement

With environmental issues and health becoming trending topics, usage of bicycles as a mode of
transportation has gained traction in recent years. To encourage bike usage, cities across the world have
successfully rolled out bike sharing programs. Under such schemes, riders can rent bicycles using manual/
automated kiosks spread across the city for defined periods. In most cases, riders can pick up bikes from one
location and return them to any other designated place.

The bike sharing platforms from across the world are hotspots of all sorts of data, ranging from travel
time, start and end location, demographics of riders, and so on. This data along with alternate sources
of information such as weather, traffic, terrain, and so on makes it an attractive proposition for different
research areas.

The Capital Bike Sharing dataset contains information related to one such bike sharing program
underway in Washington DC. Given this augmented (bike sharing details along with weather information)
dataset, can we forecast bike rental demand for this program?

Exploratory Data Analysis

Now that we have an overview of the business case and a formal problem statement, the very next stage is to
explore and understand the data. This is also called the Exploratory Data Analysis (EDA) step. In this section,
we will load the data into our analysis environment and explore its properties. It is worth mentioning

again that EDA is one of the most important phases in the whole workflow and can help with not just
understanding the dataset, but also in presenting certain fine points that can be useful in the coming steps.

Note The bike sharing dataset contains day level and hour level data. We will be concentrating only on
hourly data available in hour.csv.

Preprocessing

The EDA process begins with loading the data into the environment, getting a quick look at it along with
count of records and number of attributes. We will be making heavy use of pandas and numpy to perform data
manipulation and related tasks. For visualization purposes, we will use matplotlib and seaborn along with
pandas ' visualization capabilities wherever possible.

We begin with loading the hour.csv and checking the shape of the loaded dataframe. The following
snippet does the same.

In [2]: hour df = pd.read csv('hour.csv')
...t print("Shape of dataset::{}".format(hour_ df.shape))

Shape of dataset:: (17379, 17)

The dataset contains more than 17k records with 17 attributes. Let’s check the top few rows to see how
the data looks. We use the head() utility from pandas for the same to get the output in Figure 6-1.

308

CHAPTER 6 " ANALYZING BIKE SHARING TRENDS

instant dteday season yr mnth hr day day workingd thersit temp atemp hum indspeed casual gistered conl
0 1 2011-01-01 1 0 1 0 0 6 0 1 024 02879 081 0.0 3 13 16
1 2 201-01-0n 1 0 11 0 6 0 1 022 02727 080 0.0 B8 a2 a0
2 3 2011-01-01 10 1 2 0 6 0 1 022 02727 080 0.0 5 271 32
3 4 2011-01-01 10 1 3 0 6 0 1 024 02879 075 0.0 3 10 13
4 5 2011-01-01 1 0 1 4 0 6 0 1 024 02879 075 0.0 o 1 1

Figure 6-1. Sample rows from Bike Sharing dataset

The data seems to have loaded correctly. Next, we need to check what data types pandas has inferred
and if any of the attributes require type conversions. The following snippet helps us check the data types of

all attributes.

In [3]: hour_df.dtypes

Out[3]:
instant
dteday
season

yr

mnth

hr

holiday
weekday
workingday
weathersit
temp

atemp

hum
windspeed
casual
registered
cnt

dtype: object

int64
object
int64
int64
int64
int64
int64
int64
int64
int64
float64
float64
float64
float64
int64
int64
int64

As mentioned in the documentation for the dataset, there are bike sharing as well as weather attributes
available. The attribute dteday would require type conversion from object (or string type) to timestamp.
Attributes like season, holiday, weekday, and so on are inferred as integers by pandas, and they would
require conversion to categoricals for proper understanding.

Before jumping into type casting attributes, the following snippet cleans up the attribute names to make
them more understandable and pythonic.

In [4]: hour_ df.rename(columns={

"instant':'rec_id’',
'dteday':'datetime’,
"holiday':"'is_holiday',
'workingday':'is workingday',
'weathersit':'weather_condition’,
"hum': "humidity',

'mnth': "'month’,

'cnt':"total count’,

"hr':"hour',
'yr':'year'},inplace=True)

309

CHAPTER 6 " ANALYZING BIKE SHARING TRENDS

Now that we have attribute names cleaned up, we perform type-casting of attributes using utilities like
pd.to_datetime() and astype(). The following snippet gets the attributes into proper data types.

In [5]: # date time conversion
: hour_df['datetime'] = pd.to_datetime(hour df.datetime)

..: # categorical variables
..t hour df['season'] = hour df.season.astype('category"')
..t hour_df['is_holiday'] = hour df.is holiday.astype('category")
: hour_df['weekday'] = hour df.weekday.astype('category")
..t hour_ df['weather condition'] = hour df.weather condition.astype('category")
...t hour df['is workingday'] = hour_df.is workingday.astype('category")
...t hour df['month'] = hour df.month.astype('category")
...t hour_df['year'] = hour_df.year.astype('category")
: hour_df["hour'] = hour_df.hour.astype('category"')

Distribution and Trends

The dataset after preprocessing (which we performed in the previous step) is ready for some visual
inspection. We begin with visualizing hourly ridership counts across the seasons. The following snippet uses
seaborn’s pointplot to visualize the same.

In [6]: fig,ax = plt.subplots()
...t sn.pointplot(data=hour df[['hour',
"total_count’,
'season']],
x="hour"',y="total count’,
hue="season',ax=ax)
: ax.set(title="Season wise hourly distribution of counts")

Sweason wise hourly distribution of counts

meanitolal_count}
e 3 3 & B8

g

Figure 6-2. Season wise hourly data distribution

The plot in Figure 6-2 shows similar trends for all seasons with counts peaking in the morning between
7-9 am and in the evening between 4-6 pm, possibly due to high movement during start and end of office
hours. The counts are lowest for the spring season, while fall sees highest riders across all 24 hours.

310

CHAPTER 6 " ANALYZING BIKE SHARING TRENDS

Similarly, distribution of ridership across days of the week also presents interesting trends of higher
usage during afternoon hours over weekends, while weekdays see higher usage during mornings and
evenings. The code for the same is available in the jupyter notebook bike sharing eda.ipynb. The plotis as
shown in Figure 6-3.

Weekday wise hourly distribution of counts.

g

&

g

meanitotal_count)
g

Figure 6-3. Day-wise hourly data distribution

Having observed hourly distribution of data across different categoricals, let’s see if there are any
aggregated trends. The following snippet helps us visualize monthly ridership trends using seaborn’s
barplot().

In [7]: fig,ax = plt.subplots()
...t sn.barplot(data=hour df[['month",
. "total count']],
ot x="month",y="total count")
: ax.set(title="Monthly distribution of counts")

The generated barplot showcases a definite trend in ridership based on month of the year. The
months June-September see highest ridership. Looks like Fall is a good season for Bike Sharing programs in
Washington, D.C. The plot is shown in Figure 6-4.

Monthly distribution of counts

250

200
z

8 150
_l

g 100

) I
a
1 2 3 4 5 L] 7 8 9 10 1 12
month

Figure 6-4. Month-wise ridership distribution
311

CHAPTER 6 " ANALYZING BIKE SHARING TRENDS

We encourage you to try and plot the four seasons across different subplots as an exercise to employ
plotting concepts and see the trends for each season separately.

Moving up the aggregation level, let’s look at the distribution at year level. Our dataset contains year
value of 0 representing 2011 and 1 representing 2012. We use a violin plot to understand multiple facets of
this distribution in a crisp format.

Note Violin plots are similar to boxplots. Like boxplots, violin plots also visualize inter-quartile range and
other summary statistics like mean/median. Yet these plots are more powerful than standard boxplots due to
their ability to visualize probability density of data. This is particularly helpful if data is multimodal.

The following snippet plots yearly distribution on violin plots.

In [8]: sn.violinplot(data=hour df[['year',
cet "total count']],
x="year",y="total count")

Figure 6-5 clearly helps us understand the multimodal distribution in both 2011 and 2012 ridership
counts with 2011 having peaks at lower values as compared to 2012. The spread of counts is also much more
for 2012, although the max density for both the years is between 100-200 rides.

8

total_count
g

year

Figure 6-5. Violin plot showcasing year-wise ridership distribution

Outliers

While exploring and learning about any dataset, it is imperative that w